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Abstract Humans learn about the world in a variety of man-
ners, including by observation, by associating cues in the en-
vironment, and via feedback. Across species, two brain struc-
tures have been predominantly involved in these learning pro-
cesses: the hippocampus—supporting learning via observa-
tion and paired association—and the striatum—critical for
feedback learning. This simple dichotomy, however, has re-
cently been challenged by reports of hippocampal engage-
ment in feedback learning, although the role of the hippocam-
pus is not fully understood. The purpose of this experiment
was to characterize the hippocampal response during feedback
learning by manipulating varying levels of memory interfer-
ence. Consistent with prior reports, feedback learning recruit-
ed the striatum and midbrain. Notably, feedback learning also
engaged the hippocampus. The level of activity in these re-
gions was modulated by the degree of memory interference,
such that the greatest activation occurred during the highest
level of memory interference. Importantly, the accuracy of
information learned via feedback correlated with hippocampal
activation and was reduced by the presence of high memory
interference. Taken together, these findings provide evidence
of hippocampal involvement in feedback learning by

demonstrating both its relevance for the accuracy of informa-
tion learned via feedback and its susceptibility to interference.
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The ability of an individual to learn and make adaptive
choices takes advantage of two learning and memory systems:
the medial temporal lobe (MTL) and the basal ganglia (BG).
Across species, several studies have substantiated the idea that
the MTL system is implicated in declarative learning, whereas
the BG system, in particular the striatum, is involved in learn-
ing via feedback (for a review, seeWhite &McDonald, 2002).
Traditionally, research has focused on the dichotomy between
these two learning systems, emphasizing their individual con-
tributions to distinct learning types and the nature of their
interactions (Packard & Knowlton, 2002; Poldrack &
Packard, 2003; Squire, 2004; White & McDonald, 2002;
White, Packard, &McDonald, 2013). However, recent studies
have revealed that this dichotomy is not always observed. In
fact, the extant literature has highlighted hippocampal (i.e.,
MTL) involvement during feedback learning (Dickerson, Li,
& Delgado, 2011; Foerde et al. 2013a, b; Foerde & Shohamy,
2011a) and BG recruitment during declarative memory (for a
review, see Scimeca & Badre, 2012).

One early demonstration of hippocampal engagement dur-
ing feedback learning in humans was observed in a feedback-
based probabilistic classification task (Poldrack et al. 2001).
The authors found that theMTLwas engaged early in learning
but that this diminished over time, whereas the BG was ini-
tially less active and increased activation across learning.
Foerde and colleagues built on this study by employing a
dual-task design to investigate the roles of the MTL and BG
during feedback learning concurrent with an auditory working
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memory task (Foerde, Knowlton, & Poldrack, 2006). The
MTL was observed under Bnormal^ feedback-learning condi-
tions, and the BG was recruited during the dual-task manipu-
lation, designed tomonopolize theMTL via workingmemory.
Activity in the MTL also correlated with performance in the
Bnormal^ feedback-learning condition, but not in the dual-task
condition. Taken together, these findings documented a role
for the MTL (hippocampus) during feedback learning.

However, MTL activity is not always observed during
feedback learning (Delgado, Miller, Inati, & Phelps, 2005;
Delgado, Nystrom, Fissell, Noll, & Fiez, 2000; Dobryakova
& Tricomi, 2013; Shohamy et al. 2004a; Tricomi, Delgado, &
Fiez, 2004; Wilkinson et al., 2014)—a process that seems to
be more reliant on the integrity of the BG as evidenced by
difficulties in learning via feedback expressed by patients with
Parkinson’s disease (Foerde, Braun, & Shohamy, 2013a;
Foerde, Race, et al., 2013b; Foerde & Shohamy, 2011a, b;
Jahanshahi, Wilkinson, Gahir, Dharminda, & Lagnado,
2010; Knowlton, Mangels, & Squire, 1996; Myers et al.
2003; Shohamy et al. 2004a, b; Wilkinson, Lagnado, Quallo,
& Jahanshahi, 2008), but not with patients with amnesia
(Foerde, Race, et al., 2013b; Knowlton et al. 1996; Knowlton,
Squire, & Gluck, 1994; Myers et al. 2003). Given the conflict-
ing results and differences across paradigms, it is unclear what
aspects of feedback learning engage the MTL, particularly the
hippocampus. For instance, one plausible context in which the
hippocampus becomes important for feedback learning is
when the feedback is delayed. Indeed, patients with amnesia
are impaired in probabilistic learning when the feedback is
delayed by 7 s (Foerde, Race, et al., 2013b), and activation
of the hippocampus in an fMRI study is observed with a sim-
ilar delay (Foerde & Shohamy, 2011a). In addition, the length
of the feedback delay may negatively impact recruitment of
the hippocampus (Dobryakova & Tricomi, 2013), highlight-
ing how sensitive the involvement of the hippocampus is dur-
ing feedback learning.

Another important aspect of feedback learning is process-
ing of the information conveyed by the feedback itself (i.e.,
positive or negative). Hippocampal signals have been shown
to differentiate between correct and incorrect feedback during
some forms of probabilistic, trial-and-error learning
(Dobryakova & Tricomi, 2013; Li, Delgado, & Phelps,
2011)—a pattern of activation similar to responses observed
in the striatum (Delgado, 2007; Delgado et al. 2000; Tricomi
et al. 2004). This is consistent with processing a prediction
error learning signal—a signal that indicates whether the out-
come was better or worse than expected—which typically is
associated with blood-oxygen-level-dependent (BOLD) re-
sponses in the striatum in humans (for reviews, see Daw &
Doya, 2006; O’Doherty, 2004) and with dopamine midbrain
neuronal activity in nonhuman primates (Schultz, Dayan, &
Montague, 1997). A few examples have also shown a corre-
lation between such signals and the hippocampus during

probabilistic feedback learning (Dickerson et al. 2011; Foerde
& Shohamy, 2011a), although the majority of fMRI studies
that have measured brain correlations with prediction error in
humans have observed striatum, rather than hippocampal, in-
volvement. Thus, although evidence that the hippocampus
may contribute to feedback learning is mounting (Cincotta
& Seger, 2007; Dickerson et al. 2011; Foerde, Race, et al.,
2013b; Foerde & Shohamy, 2011a; Li et al. 2011; Mattfeld
& Stark, 2011; Okatan, 2009; Wimmer & Shohamy, 2012),
the circumstances of hippocampal recruitment and the contri-
butions of the hippocampus to feedback learning remain un-
certain and topics of great interest.

To investigate the role of the hippocampus during feed-
back learning, we asked the following questions: (1) Is the
hippocampus recruited during a simple probabilistic
feedback-learning task? (2)Is hippocampal activation cor-
related with the feedback cue accuracy during learning?
And (3)Would the presence of a secondary task that re-
cruits the hippocampus negatively impact feedback learn-
ing? We reasoned that one way to address these questions
would be to utilize a dual-task manipulation to examine
the engagement of the hippocampus under conditions of
(a)baseline feedback learning and (b) feedback learning
concurrent with a task competing for hippocampal en-
gagement—namely memory interference. Our dual-task
design therefore kept feedback learning constant across
all sessions while varying the amount of interference (no
interference, low interference, high interference). The use
of a dual-task paradigm to examine related questions has been
validated by others (Foerde, Braun, & Shohamy, 2013a;
Foerde et al. 2006; Wimmer, Braun, Daw, & Shohamy,
2014), but it is still a novel aspect of this design, and builds
on former dual-task paradigms by utilizing two dual-task con-
ditions: one designed to explicitly interfere with the hippo-
campus, and the other to recruit the hippocampus at a minimal
to low level. We hypothesized that the hippocampus contrib-
utes to feedback learning, and therefore that (1)the hippocam-
pus would be engaged during feedback learning, (2)
hippocampal activation would positively correlate with feed-
back learning, and (3)feedback learning would be adversely
affected by a memory task competing for hippocampal acti-
vation (high-memory-interference condition). More specifi-
cally, we hypothesized that if the hippocampus is im-
portant for feedback learning, the accuracy of informa-
tion learned via feedback should be diminished in the
high-memory-interference condition relative to the other
conditions. However, if hippocampal involvement is not
important for feedback learning, then we should find
either (a)no decrease in feedback learning in the high-
memory-interference condition or (b)an improvement in
feedback learning, consistent with the animal literature
(Lee, Duman, & Pittenger, 2008; Packard, Hirsh, &
White, 1989).
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Method

Overview

We employed a dual-task design in order to examine the role
of the hippocampus in feedback learning. Specifically, we
probed activity in the hippocampus and in regions more typ-
ically associated with feedback learning (i.e., the striatum and
midbrain) during probabilistic feedback learning concurrent
with varying levels of memory interference. Participants per-
formed a probabilistic feedback-learning task concurrent with
no memory interference (control condition), low memory in-
terference (keeping a scene inmind for a few seconds), or high
memory interference (determining whether a scene was old or
new). The high-memory-interference condition was designed
to recruit the hippocampus for scene recognition, thereby re-
ducing this region’s ability to engage in feedback learning.

Experimental design

Participants Twenty-eight right-handed adults (15 female,
13 male; mean age= 22 years, SD= 5.0) participated in the
study and provided informed consent prior to beginning the
experiment. The Institutional Review Boards of Rutgers Uni-
versity and the University of Medicine and Dentistry of New
Jersey (UMDNJ) approved this study. Participants were
screened for head injury, history of psychiatric or neurological
impairments, and contraindications to MRI (e.g., metal im-
plants, claustrophobia). All females were administered a preg-
nancy test, which was verified to be negative, prior to begin-
ning the MRI session. The final analysis consisted of 24 par-
ticipants (12 female, 12 male), because four participants failed
to complete the fMRI session on the second day, due to scan-
ner malfunction (two), failure to attend to stimuli in the first
session (one self-reported using his/her cellphone during the
session), or voluntarily withdrawing (one).

fMRI acquisition A 3-T Siemens Allegra MRI scanner at the
UMDNJ Advanced Imaging Center was used to collect the
structural (T1-weighted MPRAGE: 256 × 256 matrix, FOV=
256 mm, 176 1-mm sagittal slices) and functional images
(single-shot echo EPI sequence; TR= 2,000 ms, TE= 25 ms,
FOV= 192 cm, flip angle= 80°, matrix= 64 × 64, slice thick-
ness= 3 mm). Forty contiguous oblique-axial slices (3 × 3 ×
3 mm voxels) were acquired parallel to the anterior commis-
sure–posterior commissure line. Functional data preprocess-
ing and analysis was completed using the Brain Voyager QX
software (Brain Innovation, Maastricht, The Netherlands).
The preprocessing consisted of slice-timing correction,
three-dimensional motion correction (six parameters), spatial
smoothing (4 mm, full width at half maximum), high-pass
filtering of frequencies (three cycles per time course), and
normalizing the data to the Talairach stereotaxic space

(Talairach & Tournoux, 1988). A canonical two-gamma he-
modynamic response function was used to convolve the
events of interest.

Experimental task E-Prime Version 2.0 (Psychology Soft-
ware Tools, Pittsburgh, PA) was used to program the task.
Participants viewed the task inside the MRI via the use of a
back-projection system using a mirror affixed to the head coil.
AnMRI-compatible button box was used to record behavioral
responses. Monetary compensation consisted of $10 per hour
for behavioral testing and screening, and $25 per hour for the
neuroimaging session. All participants were paid a total of $60
and debriefed following task completion.

The experiment involved two days of participation—a be-
havioral and a neuroimaging session, respectively. On Day 1,
participants completed a behavioral declarative-memory
encoding session in the laboratory. Participants viewed 40
unique scenes (courtesy of R. Alison Adcock) on a computer
and made a simple decision about each scene to ensure their
attention during encoding (i.e., determining whether the scene
contained water). Each scene was presented once (Fig. 1A).
Participants were informed that their scene memory would be
tested the following day and that their payment would be
determined in part by how well they correctly discriminated
between old and new scenes. Encoding trials consisted of the
scene presentation (4 s), a jittered interstimulus interval (ISI;
2–4 s), the decision period (4 s), and a jittered intertrial interval
(ITI; 4–10 s). During the decision period, participants indicat-
ed the presence/absence of water in the scene by pressing: 1
definitely water in the scene, 2 probably water in the scene, 3
probably no water in the scene, or 4 definitely no water in the
scene. They were instructed to press the B2^ or the B3^ key if
they had trouble remembering the scene or if it was ambigu-
ous whether the scene contained water. A blue box highlight-
ed the participant’s choice. They were paid $10 for participat-
ing in the encoding session.

On Day 2, participants completed the neuroimaging
portion of the study. This consisted of a probabilistic
feedback-learning task that varied with respect to (a)an
additional behavioral requirement (session type) and (b)
difficulty (adapted from Delgado et al. 2005; Delgado
et al. 2000; Dickerson et al. 2011). During the experiment,
participants were presented with six unique cues (shapes).
The participants’ goal was to learn the numerical value of
these cues; they were instructed that each cue had been
randomly assigned a value on the scale of 1–9. They were
informed that they did not need to learn the exact value of
each cue, but to categorize each one as being higher or
lower than 5. Participants were told to guess and learn
from feedback whether their response was correct or in-
correct, and they were also instructed about the probabi-
listic nature of the task. Specifically, they were informed
that there was no perfect answer and that they should make
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the response that provided them with predominantly cor-
rect feedback.

There were three distinct learning session types: no mem-
ory interference/feedback control (Fig. 1B), low memory in-
terference (Fig. 1C), and high memory interference (Fig. 1D).
The task also varied with respect to difficulty, assessed by the
probabilistic values of the cues: Three of the cues were 90%
predictive of their value (hereafter referred to as the easy
cues), and three cues were 70% predictive of their value (here-
after referred to as the hard cues). Each session type contained
one easy and one hard cue. Participants were instructed about
all session types and performed a short practice version of the
task (using different stimuli) prior to entering the scanner. The
images for the practice session were drawn in part from the

McGill University Calibrated Colour Image Database (Olmos
& Kingdom, 2004).

The experimental session on Day 2 consisted of a learning
phase and a test phase. In the learning phase, participants’
primary goal was to learn the numerical value of each cue.
The learning phase consisted of six runs (two presentations of
each session type). Each run contained 20 trials (ten easy-cue
trials and ten hard-cue trials), for a total of 120 trials. The trial
format in all sessions consisted of a natural scene/cue presen-
tation (4 s); a jittered ISI (2–4 s); feedback presentation con-
tingent on the participant’s response for the cue value—√ for
correct, X for incorrect, and # for missed trials (2 s); the deci-
sion period (varied by session type; 4 s); and a jittered ITI (4–
10 s) before onset of the next stimulus. In all learning sessions,

Fig. 1 Experimental task design.
(A)In the Day 1 encoding session,
participants viewed 40 scene
images in the laboratory and
made a response indicating
whether or not each scene
contained water. In the Day 2
learning session, participants
learned the probabilistic values of
six cues (e.g., a triangle) via
feedback while undergoing
functional neuroimaging. (B)In
the feedback control (FC) session,
they were instructed to ignore the
novel natural scenes. There was
no memory interference in this
session. (C)In the low-memory-
interference (LMI) session, they
made a judgment regarding the
presence or absence of water in
each new scene. (D)In the high-
memory-interference (HMI)
session, they judged whether each
scene was old (from Day 1
encoding session) or new. ISI,
interstimulus interval; ITI,
intertrial interval
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the stimulus presentation period contained a natural scene and
a probabilistic cue. Depending on the session type, the natural
scene was either new or old. Each natural scene was presented
only one time (scenes did not overlap across sessions). Partic-
ipants were instructed to make a buttonpress in all sessions
during the stimulus presentation period regarding the value of
the probabilistic cue. Additionally, participants were
instructed to optimize their responses, and their accuracy
was scored according to this optimization strategy. Instruc-
tions for the natural scenes varied by session type, as de-
scribed below.

In the high-memory-interference (HMI) session, partici-
pants were required to determine whether the natural scene
presented in each trial was old or new while simultaneously
learning the value of the probabilistic cues (Fig. 1D). As in all
sessions, they made a buttonpress indicating the value of the
probabilistic cue in the stimulus presentation period. Follow-
ing the ISI and the feedback presentation period, the response
screen appeared. In this session, participants were told to press
1 if they thought the scene was definitely old, 2 if it was
probably old, 3 if it was probably new, and 4 if it was definitely
new. Additionally, participants were instructed to press 1 only
if they had a strong memory of seeing the scene on the day
prior (I remember) and 2 if they recognized the scene to be
old, but did not have a strong memory of seeing it the day
before (I know). They were explicitly informed that half of the
scenes would be old and half would be new and that this was
the only session in which they would see natural scenes that
had been shown on the day prior. The purpose of this session
was to create a high level of memory interference by engaging
the hippocampus in the scene recognition task.

In the low-memory-interference (LMI) session, participants
were instructed to attend to the natural scenes in order to
perform the water detection task while simultaneously learn-
ing the value of the probabilistic cues (Fig. 1C). They were
told they would not be tested on the scenes. In the LMI ses-
sion, participants viewed the natural scene/cue and made a
buttonpress indicating the value of the probabilistic cue during
the stimulus presentation period. Following the ISI and the
feedback presentation, the response screen appeared, and par-
ticipants were instructed to make a response regarding the
presence or absence of water in the natural scene. This re-
sponse screen was identical to that presented during the
Day 1 encoding session. The purpose of the LMI condition
was to serve as a control for the effects of multitasking in the
HMI session. Our goal was to create two dual-task condi-
tions—one that recruited the MTL (HMI) and one that en-
gaged the MTL at a minimal level, if at all (LMI). The mini-
mal level of MTL recruitment could be attributed to incidental
encoding that is possible during the LMI session (see the
Discussion section for implications).

In the session with no memory interference, the feedback
control (FC) session, participants were instructed to focus on

learning the value of the probabilistic cues and to ignore the
natural scenes, which were all new (Fig. 1B). Participants
were informed that they would not be tested on the scenes.
They viewed the natural scene/cue and made a buttonpress
indicating the value of the probabilistic cue during the stimu-
lus presentation/response period. After the ISI, participants
received feedback contingent on their response. Following
the feedback, participants made a buttonpress (buttons 1–4)
that had nomeaningful value and served as a motor control for
the other sessions. The purpose of the FC session was to assess
a baseline level of participants’ feedback learning in the ab-
sence of memory interference.

Equal numbers of participants completed the six sessions,
in one of two orders: (1)FC, HMI, LMI, FC, HMI, LMI; or (2)
FC, LMI, HMI, FC, LMI, HMI. The trial order in each block
was pseudorandomized to ensure the trial types were bal-
anced; all participants completed the identical trial order. Par-
ticipants were informed that the total amount of money they
would receive would be determined by how well they correct-
ly identified old versus new natural scenes in the HMI session,
and by howwell they learned the value of the feedback cues in
all three learning sessions. Importantly, we instructed partici-
pants in this manner so that they would try to learn both the
scenes and the values of the cues equally well. However, all
participants were paid the same amount of money and
debriefed.

Following the learning session, participants completed a
test session that contained the probabilistic cues presented in
all three sessions, as well as two novel cues. Critically, no
feedback or natural scenes were presented. Participants were
required to indicate the value of the probabilistic cues that they
had learned in the learning phase to test for accuracy. The test
session contained 80 trials total, ten presentations of each cue,
presented in random order. The trial structure and timing
consisted of a self-timed stimulus–response period during
which participants indicated the value of the cue, followed
by a 6- to 14-s jittered ITI before onset of the next cue.

Data analyses

Behavioral data analysis D prime (d') analyses were per-
formed to examine the participants’ ability to correctly iden-
tify scenes that contained water versus those that did not in the
Day 1 and Day 2 sessions, and to identify old versus new
scenes in the Day 2 task (Macmillan& Creelman, 1991). Such
analyses are informative because they account for a partici-
pant’s response bias (e.g., being more likely to choose old vs.
new) when calculating a participant’s ability to correctly iden-
tify a stimulus (sensitivity). We also report hit rates, false
alarm rates, misses, and correct rejections, and focus our anal-
yses and interpretations on hit rates. Finally, consistent with
other probabilistic-learning tasks (Dickerson et al. 2011;
Foerde et al. 2006; Foerde, Race, et al., 2013b; Foerde &
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Shohamy, 2011a), when analyzing the feedback cue learning
data, we calculated accuracy scores based on optimizing the
cue probabilities. For example, for a cue that was 70% higher
than 5, participants received a score of 100% correct if they
responded Bhigher than 5^ on every trial.

Neuroimaging data analyses: General linear model The
primary analysis of interest was to examine activation with-
in the brain across the three distinct sessions (FC, LMI, and
HMI) to investigate the role of the hippocampus in feed-
back learning under different levels of memory interfer-
ence. For the learning phase, we conducted a random-
effects general linear model (GLM) containing three pre-
dictors, one representing each session type: FC, LMI, and
HMI. Missed trials and six motion parameters were also
included as regressors of no interest. The BOLD signal
was examined during the stimulus presentation period
(when the probabilistic cue and natural scene were present-
ed on the screen). During this time period, participants
made a choice regarding the value of the probabilistic cue
and presumably either ignored or attended to the natural
scene, depending on the session (ignore the scene in the
FC session; look for water in the LMI session; or try to
remember the scene in the HMI session). This time period
was examined in order to probe for differences in learning
and memory processing within the brain, with the primary
focus on the hippocampus, but also investigating the stria-
tum and midbrain as regions particularly involved in
feedback-based learning and reward-related processing
(for reviews, see Daniel & Pollmann, 2014; Delgado,
2007; Schultz, 1998).

First, we performed a contrast of FC versus baseline to
probe for hippocampal activation during feedback learn-
ing with no memory interference. Second, we performed a
repeated measures analysis of variance (ANOVA) using
Session Type (FC, LMI, HMI) as a within-subjects factor.
We examined the main effect of session type to determine
how the hippocampus, ventral striatum, and midbrain var-
ied according to the level of memory interference. Third,
we performed an exploratory ANOVA during the feedback
period, again using Session Type (FC, LMI, HMI) as a
within-subjects factor to determine how the hippocampus,
ventral striatum, and midbrain were engaged during the
processing of cue feedback. The results from this analysis
should be interpreted with caution, however, because there
were insufficient incorrect trials to model the data appro-
priately. The resulting statistical maps in all analyses were
false-discovery rate (FDR) corrected.

Post-hoc and correlation analyses conducted on the be-
havioral and neuroimaging data consisting of more than
two tests within a family of comparisons were corrected
for multiple comparisons with the sequential Bonferroni
technique (Holm, 1979; Rice, 1989). All significant

statistical tests survived correction for multiple compari-
sons, unless otherwise noted.

Results

Behavioral results

Water detection task: Participants correctly identified
scenes Participants were able to successfully discriminate
between scenes that contained water versus those that did
not. On both days, participants’ hit rates for identifying
scenes with water were greater than the false alarm rates,
with a bias toward labeling scenes as containing water (for
statistics, see Table 1).

Scene recognition: Participants successfully remembered
the scenes In the HMI session, participants’ hit rate was sig-
nificantly greater than the false alarm rate, with a bias toward
labeling scenes as new, suggesting that participants were able
to successfully discriminate between old and new scenes. Fur-
thermore, participants’ hit rate was greater than chance (for
statistics, see Table 1).

Dual-task comparison: Participants performed better on
the LMI session To assess the difficulty differences across
our memory interference manipulations, we compared partic-
ipants’ hit and false alarm rates across the LMI and HMI
sessions. We found a significantly higher hit rate in the LMI
session than in the HMI session [t(23)= 9.21, p< .0001, d=
2.159] and a lower false alarm rate in the LMI session than in
the HMI session [t(23)= 3.12, p< .005, d= 0.640]. These
results suggest that the LMI condition (identifying and keep-
ing in mind whether or not scenes contained water) was an
easier task than the HMI recognition task (discriminating be-
tween old and new scenes).

Interactions between session type and feedback learning:
Memory interference effects on feedback learning We ex-
amined feedback learning as it varied across levels of memory
interference (session type); for instance, did participants learn
the value of the cues better in the FC than in the HMI session?
To examine feedback learning as it varied by memory inter-
ference, we performed a 3 (Session Type: FC vs. LMI vs.
HMI) × 2 (Cue Difficulty: easy vs. hard) within-subjects, re-
peatedmeasures ANOVA (Fig. 2). The results revealed a main
effect of session type [F(1.65, 37.87)= 16.58, p< .001], a main
effect of cue difficulty [F(1, 23)= 9.57, p< .01), and no sig-
nificant interaction [F(1.56,35.82)= 0.44, p= .60]. Partici-
pants performed better on cues learned in the FC and LMI
sessions than on cues in the HMI session [t(23)= 5.75, p<
.0001, d= –1.204, and t(23)= 3.54, p< .005, d= –0.730, re-
spectively]. No accuracy differences were observed between

866 Cogn Affect Behav Neurosci (2015) 15:861–877



the FC and LMI sessions [t(23)= 1.60, p= .12, d= 0.396],
suggesting that the LMI condition did not negatively affect
feedback learning. Participants performed better in the FC
and LMI sessions than in the HMI session, suggesting that
the scenememorymanipulation in the HMI session negatively
impacted feedback learning. As expected, overall perfor-
mance was significantly greater for easy than for hard cues
[t(23)= 3.13, p< .005, d= 0.639]. Importantly, we observed no
significant interaction with cue difficulty, indicating that dif-
ficulty had similar effects across session types. See Supple-
mentary Fig. 1 for mean accuracy plotted across learning
blocks.

Feedback-learning effects onmemory performance We al-
so examined memory performance as it varied by feedback
cue accuracy (correct vs. incorrect trials). To examine how
participants’ scene memory was influenced by feedback cue
accuracy, we compared participants’ hit, false alarm, miss, and
correct rejection rates, as well as d' and C for correct versus
incorrect trials for 22 participants (two participants were ex-
cluded from this analysis due to a hit rate of 0 on incorrect
trials). There was a marginally higher false alarm rate on in-
correct trials [t(21)= 1.76, p= .09, d= 0.376]; no other tests
were significant [hit rate, t(21)= 0.07, p= .95, d= 0.014; miss
rate, t(21)= 0.07, p= .95, d= 0.014; correct rejection rate,
t(21)= 1.48, p= .15, d= 0.316; d', t(21)= 1.39, p= .18, d=
0.296; C, t(21)= 1.45, p= .16, d= 0.309]. Thus, memory per-
formance did not differ significantly with respect to feedback-
learning accuracy.

Relationship between feedback cue learning and scene
memory We examined whether there was a significant rela-
tionship between participants’ performance in feedback learn-
ing and scene memory by performing across-subjects correla-
tions of the cue accuracy in each session with the hit rate in the
HMI session. No significant relationships were observed in

any session [HMI, r(22)= .24, p= .26; LMI, r(22)= .33, p=
.11; FC, r(22)= .28, p= .19], indicating that performance on
these tasks may be orthogonal.

Test phase A test phase was included to examine accuracy
differences between the probabilistic cues (easy and hard) ac-
quired across the three session types during the learning phase.
The first analysis probed for potential differences in session
types, irrespective of cue difficulty, by conducting a repeated
measures, within-subjects ANOVA using Session Type as a
within-subjects factor (FC, LMI, HMI, and novel). A signifi-
cant main effect of session type was observed [F(2.11, 48.62)=
13.21, p< .001; Supplementary Fig. 2]. Post-hoc ttests indicat-
ed significantly greater performance for the cues presented in
all sessions than for novel cues [FC vs. novel, t(23)= 5.18, p<

Table 1 Low- and high-
memory-interference behavioral
results

Day 1 Day 2

LMI: Water Detection Task

Mean hit rate (SEM) .97 (.00) .93 (.01)

Mean false alarm rate (SEM) .16 (.02) .11 (.02)

Hit vs. false alarm rate t(23)= 48.14, p< .0001, d= 12.535 t(23)= 32.39, p< .0001, d= 6.907

d prime d'= 2.95, C= –.41 d'= 2.95, C= –.12

HMI: Scene Retrieval

Mean hit rate (SEM) .61 (.04)

Mean false alarm rate (SEM) .24 (.03)

Hit vs. false alarm rate N.A. t(23)= 9.58, p< .0001, d= 1.973

d prime d'= 1.11, C= .25

Hit rate vs. chance t(23)= 3.10, p< .01

Abbreviations indicate low-memory-interference (LMI) and high-memory-interference (HMI) sessions

Day 2 Probabilistic Feedback Cue Accuracy
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Fig. 2 Participants’ mean accuracy for learning the values of the
probabilistic cues in the Day 2 learning session. A 3 (Session Type: FC
vs. LMI vs. HMI) × 2 (Cue Difficulty: easy vs. hard) within-subjects,
repeated measures ANOVA revealed a main effect of session type (p<
.001), a main effect of cue difficulty (p< .01), and no significant
interaction (p= .60). Error bars represent standard errors of the means.
Abbreviations indicate the feedback control (FC), low-memory-
interference (LMI), and high-memory-interference (HMI) sessions

Cogn Affect Behav Neurosci (2015) 15:861–877 867



.0005, d= 1.061; LMI vs. novel, t(23)= 4.54, p< .0005, d=
0.932; HMI vs. novel, t(23)= 3.19, p< .005, d= 0.653]. Mar-
ginally significantly better accuracy was observed for cues pre-
viously presented in the FC session than for those in the HMI
session [t(23)= 2.19, p= .04, d= –0.447; trend after sequential
Bonferroni correction]. No other significant differences were
observed between cues previously presented in the various
learning sessions (all p values≥ .11).

In the second analysis, we examined differences across
session types and levels of cue difficulty, excluding novel
cues. A 3 (Session Type: FC vs. LMI vs. HMI) × 2 (Cue
Difficulty: easy vs. hard) repeated measures, within-subjects
ANOVA was performed. The results revealed a significant
main effect of session type [F(1.21, 27.87)= 3.88, p= .05],
no significant main effect of cue difficulty [F(1, 23)= 0.07, p=
.80], and no significant interaction of cue difficulty and ses-
sion type [F(1.79, 41.13)= 0.60, p= .54]. As we reported in
the preceding paragraph, the main effect of session type was
driven by nearly better performance in the FC than in the HMI
session [t(23)= 2.19, p= .04, d= –0.447; trend after sequential
Bonferroni correction].

Neuroimaging results

Contrast of feedback learning versus baseline: Hippocam-
pal engagement during feedback learning To first investi-
gate whether the hippocampus was engaged during feedback
learning, we performed a whole-brain contrast of feedback
learning (using our FC session) versus baseline. This compar-
ison revealed extensive engagement of the bilateral MTL, in-
cluding the hippocampus (right: x, y, z= 21, –23, –4; left: x, y,
z= –25, –23, –5) and parahippocampal cortex (right: x, y, z=
23, –29, –14; left: x, y, z= –22, –30, –14) [q(FDR)< .05;
Fig. 3]. These results support the hypothesis that the hippo-
campus is engaged in feedback learning.

Session type GLM: Engagement of subcortical learning
and memory regions Having established that the hippo-
campus is engaged in feedback learning, we next

examined how activity in the hippocampus and in other
subcortical learning and memory regions varied in terms
of the level of interference by competing tasks. To do
so, we conducted a repeated measures ANOVA using
Session Type (FC, LMI, HMI) as a within-subjects fac-
tor. Examining the main effect of session type revealed
the engagement of subcortical regions previously report-
ed during learning and memory processes (Adcock,
Thangavel, Whitfield-Gabrieli, Knutson, & Gabrieli,
2006; Shohamy & Adcock, 2010), including the hippo-
campus, ventral striatum, and midbrain [q(FDR)< .001;
Table 2]. We extracted the mean BOLD signal from
these functionally defined regions of interest (ROIs)
and then conducted post-hoc t tests to examine the pat-
tern of activity within the bilateral hippocampus, bilat-
eral ventral striatum, and midbrain.

All examined a priori ROIs (identified from the whole-
brain ANOVA) displayed similar patterns of activity showing
modulation by memory interference, with the greatest amount
of BOLD signal being exhibited during the HMI condition
(Fig. 4; see Table 3 for all t statistics). Activity within the right
hippocampus (x, y, z= 18, –12, –18; Fig. 4B) scaled according
to session type. The left hippocampus (x, y, z= –20, –19, –13)
showed greater activation in the HMI than in the LMI and FC
conditions, and marginally greater activity in the LMI than in
FC condition. A similar pattern of activity was observed in
areas more typically associated with feedback learning (ven-
tral striatum and midbrain). The right ventral striatum (x, y, z=
10, 3, 3; Fig. 4A) showed enhanced activity in the HMI con-
dition relative to the LMI and FC sessions, with no significant
difference between the LMI and FC sessions. The left ventral
striatum (x, y, z= –11, 4, 2) displayed a similar pattern of
results, with approaching greater activity for LMI than for
FC. Lastly, activity within the midbrain (x, y, z= 0, –15, –9;
Fig. 4C) scaled according to session type.

Session type GLM control analyses We constructed three
additional models to examine whether differences in difficul-
ty, learning, and/or processing speed across session types

Fig. 3 Whole-brain contrast of
feedback control versus baseline,
revealing extensive engagement
of the medial temporal lobe
(MTL), including the bilateral
hippocampus and
parahippocampal cortex
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significantly contributed to the observed results. The results
from all three models were consistent with our original find-
ings, as we detail below.

Session type GLM with cue difficulty First we included
cue difficulty as a regressor in the model that contained
session type, allowing us to examine BOLD responses in
our ROIs for both easy and hard cues. If difficulty differ-
ences were driving the results, one might expect to see a
different pattern of results for easy than for hard cues. In
the behavioral data, differences emerged across the HMI
and LMI session for the hard cues only. Therefore, it could
be argued that our results may have been caused by differ-
ential responses in our ROIs specifically to the hard cues.
If this were the case, we should observe a significant in-
teraction of session type with cue difficulty. Importantly,
there was no significant interaction in our a priori ROIs.
As can be seen in Supplementary Fig. 3, the BOLD re-
sponses were not significantly different for easy- and
hard-cue trials in the hippocampus or ventral striatum
(all p values> .17). The midbrain showed greater activa-
tion for the hard than for the easy cues in the HMI session
only [t(23)= 2.43, p< .05, d= 0.497], but the overall pat-
tern of activation remained the same in this region.

Session type GLM with correct trials only The second
model contained correct trials only as regressors of inter-
est (including incorrect trials as predictors of no interest).
This independent analysis again allowed us to examine

whether differences in accuracy or learning were driving
our effects. Specifically, if incorrect trials, the proportion
of incorrect to correct trials, or another metric of difficulty
that existed across session types contributed to our origi-
nally observed results, one might expect a different pattern
to emerge in an analysis that modeled correct trials only.
Importantly, the results from this model recapitulated our
original findings, again suggesting that differences in
accuracy/learning were not a significant contributor to
the original results (see Supplementary Fig. 4).

Session type GLM with reaction time The third analysis
contained trial-by-trial reaction times included as a con-
found regressor in the model. This independent analysis
again allowed us to examine whether differences in per-
formance, as assessed by reaction times, were driving our
effects. This model was particularly important, because
reaction time differences were observed across session
types (see Supplementary Fig. 5). Therefore, if reaction
time differences across session types contributed to our
originally observed results, one might expect a different
pattern to emerge in this model. Critically, the results from
this model recapitulated our original findings, providing
converging evidence that differences in processing speed/
accuracy/learning were not significant contributors to the
original results (see Supplementary Fig. 6). Together, the-
se data support the argument that differences in difficulty
across sessions did not significantly contribute to the ob-
served patterns of BOLD activation.

Table 2 Learning phase: Whole-brain session type model

Region of Activation Brodmann Area (BA) Laterality Talairach Coordinates # Voxels (mm3) F stat

x y z

Precentral gyrus BA 6 Left –28 –11 54 563 28.53

Middle frontal gyrus BA 6 Right 29 –5 51 482 21.35

Middle frontal gyrus BA 6 Left –4 1 48 743 29.81

Precentral gyrus BA 6 Right 41 –2 33 554 34.49

Supramarginal gyrus BA 40 Right 50 –53 30 539 24.16

Precentral gyrus BA 6 Left –40 –2 30 791 29.41

Supramarginal gyrus BA 40 Left –55 –56 30 219 16.28

Temporal parietal junction BA 13 Right 44 –35 24 172 20.89

Insula BA 13 Left –31 19 9 831 28.59

Insula Right 32 16 3 642 31.93

Ventral striatum Right 10 3 3 566 36.96

Ventral striatum Left –11 4 2 728 37.38

Midbrain 0 –15 –9 420 20.99

Hippocampus Left –20 –19 –13 101 19

Ventral visual processing stream Left –31 –47 –15 1,000 91.15

Hippocampus Right 18 –12 –18 289 22.48
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Brain–behavior correlations: Hippocampus significantly
correlated with feedback learning in the FC session and
with memory performance in the HMI session In order to
probe the behavioral relevance of the observed activation,
Pearson’s correlations were conducted between the mean pa-
rameter estimates from our a priori ROIs and the behavioral
accuracy measures. To test our hypothesis that the hippocam-
pus was engaged in feedback learning, we examined whether
the hippocampal BOLD signal correlated with feedback cues
learning during the learning phase, specifically for the FC

session. According to our hypothesis, the mean BOLD signal
and feedback cue accuracy were positively correlated in the
right hippocampus [r(22)= .44, p< .05] and marginally posi-
tively correlated in the left hippocampus [r(22)= .37, p= .08]
in the FC session (Fig. 5). These results demonstrate the func-
tional significance of the engagement of the hippocampus
during probabilistic feedback learning by relating the BOLD
signal with behavioral accuracy.

To test our hypothesis that hippocampal activation was
related to scene memory in the HMI condition, we performed

M
ea

n
Pa

ra
m

et
er

Es
tim

at
es

(β
)

Time (seconds) Session Type

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

-0.2

-0.1

0 

0.1 

0.2 

0.3 

0.4 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

-0.2

-0.1

0 

0.1 

0.2 

0.3 

0.4 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

-0.2

-0.1

0 

0.1 

0.2 

0.3 

0.4 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

A

B

C

Fig. 4 Whole-brain results from general linear model of the main effect
of session type: Mean BOLD signal in bilateral ventral striatum(A), right
hippocampus(B), and midbrain(C). All regions exhibited the greatest
amount of activation in the HMI session, as can be seen in the bar plots
(middle panel) and the event-related averages (ERA; right panel). Time

Point 3 denotes trial onset in the ERA plots. For simplicity, activation
from the right ventral striatum and right hippocampus only is displayed
here. Error bars represent standard errors of the means. Abbreviations in
the legend indicate the feedback control (FC), low-memory-interference
(LMI), and high-memory-interference (HMI) sessions

Table 3 Post-hoc ttests in a priori ROIs: Comparison across session types

Regions HMI> LMI HMI> FC LMI> FC

R hippocampus t(23)= 3.80, p< .001, d= 0.775 t(23)= 6.94, p< .0001, d= –1.419 t(23)= 2.92, p< .01, d= –0.597

L hippocampus t(23)= 4.26, p< .0005, d= 0.870 t(23)= 5.50, p< .0001, d= 1.134 t(23)= 1.84, p= .08, d= 0.381

R ventral striatum t(23)= 4.33, p< .0005, d= 0.884 t(23)= 7.05, p< .0001, d= 1.460 t(23)= 1.09, p= .29, d= 0.225

L ventral striatum t(23)= 6.20, p< .0001, d= 1.281 t(23)= 8.21, p< .0001, d= 1.804 t(23)= 2.01, p= .06, d= 0.419

Midbrain t(23)= 3.90, p< .001, d= 0.798 t(23)= 7.58, p< .0001, d= 1.606 t(23)= 2.47, p< .05, d= 0.510

The table shows planned post-hoc comparisons following significant ANOVA results; all significant tests survived correction for multiple comparisons.
Abbreviations indicate the feedback control (FC), low-memory-interference (LMI), and high-memory-interference (HMI) sessions
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an across-subjects analysis correlating participants’ hit rates
with the BOLD signal in the HMI condition from the bilateral
hippocampal ROIs. Consistent with our hypothesis, the right
hippocampus positively correlated with participants’ hit rates
[r(22)= .54, p< .01], suggesting that the HMI manipulation
was successful [note that there was no significant relationship
in the left hippocampus: r(22)= .14, p= .52; see Supplemen-
tary Fig. 7]. Notably, no significant relationships emerged
betweenmemory performance and BOLD signal in the ventral
striatum [right, r(22)= .22, p= .30; left, r(22)= .14, p= .50] or
the midbrain [r(22)= .12, p= .58]. To test whether the rela-
tionship between the hippocampus and scene memory was
different from the relationship of the striatum or midbrain with
scene memory, we performed Steiger’s Z test (Meng,
Rosenthal, & Rubin, 1992). Specifically, we performed a
one-tailed test, since we hypothesized that the hippocampus
would be significantly more positively correlated with scene
memory than would the other two regions. We observed that
the relationship between hippocampal activation and memory
performance was distinct from relationships in the other re-
gions: hippocampus versus left ventral striatum, Z= 1.85, p<

.05; versus right ventral striatum, Z= 1.65, p= .05; versus
midbrain, Z= 1.82, p< .05.

Feedback period analysis: Session type GLM with correct
tr ials only—Engagement of hippocampus and
striatum Lastly, we performed an exploratory analysis of
the feedback period, when participants received feedback re-
garding their choices about the cue values. This analysis was
deemed exploratory because it included only correct trials,
given the scarcity of incorrect trials. This model revealed the
engagement of both the hippocampus and striatum, although
the loci of activation and the patterns of results differed from
the results observed during the stimulus presentation period.
The hippocampus bilaterally (right: x, y, z,= 19, –16, –14; left:
x, y, z,= –22, –15, –17) was deactivated and showed the
following pattern: FC and LMI> HMI. The right putamen
(x, y, z,= 26, 2, 4) showed a pattern similar to the one observed
in the stimulus presentation period (HMI= LMI> FC), where-
as the left ventral striatum (x, y, z,= –15, 3, –3) showed a
blunted response to the HMI session (FC and LMI> HMI)
(see Supplementary Fig. 8).
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Fig. 5 The mean BOLD signal
was significantly positively
correlated with feedback cue
accuracy during the feedback
control (FC) session in the right
hippocampus [r(22)= .44, p<
.05], and marginally positively
correlated in the left hippocampus
[r(22)= .37, p= .08]
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Discussion

Learning via feedback is well known to engage BG circuits, as
has been evidenced by an array of research, from animal stud-
ies to impairments observed in patients afflicted with
Parkinson’s disease (e.g., Dickerson et al. 2011; Foerde,
Braun, & Shohamy, 2013a; Foerde et al. 2006; Foerde, Race,
et al., 2013b; Foerde & Shohamy, 2011a; Jahanshahi et al.
2010; Knowlton et al. 1996; Packard & Knowlton, 2002;
Poldrack et al. 2001; Shohamy, Myers, Grossman, et al.,
2004a; Shohamy, Myers, Onlaor, & Gluck, 2004b; Wilkinson
et al. 2008). Less is known about the role of the MTL, and
particularly the hippocampus, in feedback learning. In this
experiment, we utilized a dual-task manipulation to engage
the hippocampus with varying levels of memory interference
that were concurrent with feedback learning, in order to char-
acterize the contribution of the hippocampus to this type of
learning. We hypothesized that the hippocampus contributes
to feedback learning, and therefore that (1)the hippocampus
would be engaged during feedback learning, (2)hippocampal
activation would positively correlate with feedback learning,
and (3)feedback learning would be adversely affected by a
memory task competing for hippocampal activation. In accor-
dance with our hypotheses, we observed (1)engagement of
the hippocampus in all feedback-learning sessions, (2)that
feedback-learning accuracy correlated with hippocampal
function in the control condition (FC), and (3)that feedback
learning was compromised in a condition of memory interfer-
ence, where hippocampal activation significantly correlated
with scene memory. These results suggest that hippocampal
engagement in feedback learning may be an important con-
tributor to the accuracy of learned information.

The present study corroborates recent evidence in the liter-
ature that the hippocampus is involved in feedback learning
(Cincotta & Seger, 2007; Dickerson et al. 2011; Foerde, Race,
et al., 2013b; Foerde & Shohamy, 2011a; Li et al., 2011;
Mattfeld & Stark, 2011; Okatan, 2009; Wimmer & Shohamy,
2012), and critically offers the demonstration that hippocam-
pal engagement is important for the accuracy of the informa-
tion acquired during feedback learning. Timing is also an im-
portant aspect of feedback learning, since prior reports have
documented the involvement of the hippocampus when a de-
lay separates the presentation of a stimulus to be learned from
its related feedback (Foerde, Race, et al., 2013b; Foerde &
Shohamy, 2011a) and during subsequent testing post-
learning (which may index memory, rather than learning, of
cue values; Foerde et al. 2006). In the present study, we
showed that hippocampal activity also correlates with feed-
back learning after a relatively short delay. We hypothesized
that the hippocampus would correlate with feedback learning
under conditions of no memory interference (FC session).
Consistent with our hypothesis, correlations with behavioral
measures indicated that the right hippocampus correlated with

feedback learning under normal conditions (FC session). Fur-
thermore, when feedback learning was diminished in a mem-
ory interference session (HMI), hippocampal activation posi-
tively correlated with scene memory (hit rate). This result
suggests that our manipulation was, at least in part, successful,
and highlights the utility of using dual-task manipulations to
engage a region of interest.

We additionally performed an exploratory analysis of the
feedback period, when participants received feedback about
their choices regarding the values of probabilistic cues (higher
or lower than 5). Awhole-brain ANOVA revealed the engage-
ment of the hippocampus and of regions of the striatum, at
different loci than in the stimulus presentation period. Inter-
estingly, the hippocampus was deactivated during the feed-
back period. We reason that these data provide one possible
explanation of why feedback cue accuracy was worse in the
HMI session, and support the interpretation that the hippo-
campus plays a meaningful role in feedback learning. Note
that the results from this time period should be interpreted
with a degree of caution, however, since we were only able
to appropriately model correct trials.

Role of the hippocampus in feedback learning

Converging evidence from prior studies (Dickerson et al.
2011; Foerde et al. 2006; Foerde, Race, et al., 2013b; Foerde
& Shohamy, 2011a; Li et al. 2011; Poldrack et al. 2001) sug-
gested that the hippocampus contributes to feedback-based
learning of cue–reward associations. The hippocampus is be-
lieved to play a role in encoding episodes (Gluck, Meeter, &
Myers, 2003; Schacter & Wagner, 1999), stimulus–stimulus
representations (Bunsey & Eichenbaum, 1995; Eichenbaum
& Bunsey, 1995; Gluck & Myers, 1993), as well as flexibly
adapting information to use in novel contexts (Myers et al.
2003; Shohamy & Adcock, 2010; Shohamy & Wagner,
2008; Wimmer & Shohamy, 2012). In category learning, it
has been suggested that the hippocampus functions both to
compress overlapping stimulus information and to differenti-
ate between distinct stimulus information (Gluck et al. 2003;
Gluck & Myers, 1993). It is thought these hippocampal rep-
resentations are formed over time through exposure to many
trials during training, and are subsequently communicated to
cortical regions. It is possible, therefore, that the hippocampus
was compressing and updating feedback-related information
acquired throughout learning in the present task. This hypoth-
esis fits with prior literature that has shown hippocampal ac-
tivation to feedback-related information, including informa-
tion differentiating between correct and incorrect trials
(Dobryakova & Tricomi, 2013; Li et al. 2011), encoding pre-
diction errors (Dickerson et al. 2011; Foerde & Shohamy,
2011a), and prediction-error-like signals (Chen, Olsen, Pres-
ton, Glover, &Wagner, 2011). Furthermore, the hippocampus
may express information about correct associations even
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before this is detected in the subject (Okatan, 2009). As such,
the hippocampus may be among the first brain areas to express
learning and to drive behavioral change, a hypothesis consis-
tent with evidence that the hippocampus exhibits enhanced
activation prior to information that is later remembered
(Adcock et al. 2006; Shohamy & Adcock, 2010).

Evidence by Foerde and colleagues (Foerde, Race, et al.,
2013b; Foerde & Shohamy, 2011a), combined with our pres-
ent findings, suggests that timing may play a critical role in
moderating hippocampal engagement in feedback learning. In
their prior work, Foerde and Shohamy (2011a) demonstrated
that introducing a 6-s delay between the cue and the outcome
period was enough to recruit the hippocampal system as the
predominant learning system, rather than the BG. Here we
showed that a delay of as little as 2 s was enough to recruit
hippocampal activation. In our paradigm, the time window
between the cue and the outcome period varied between 2
and 4 s. In addition, there was a delay between participants’
viewing and making memory judgments about the scenes
(old/new). Therefore, one potentially important shared feature
across these distinct tasks was timing—a short delay period
prior to feedback and prior to recording memory choice.
Interestingly, a recent study by Dobryakova and Tricomi
(2013) used a very long delay (~25 min) in a feedback-
learning task, and they did not observe hippocampal activa-
tion, suggesting that performance after very long delays may
not rely on this system. Thus, an interesting future direction
would be to better understand the relationship between timing
and hippocampal engagement during feedback learning,
which may delineate exactly what circumstances are required
in order to recruit this system.

Relation to prior dual-task studies

The results from the present study complement the rich
existing literature on dual-task paradigms (Craik, Govoni,
Naveh-Benjamin, & Anderson, 1996; Foerde, Poldrack, &
Knowlton, 2007; Frensch, Lin, & Buchner, 1998; Jiménez &
Vázquez, 2005; Klingberg, 2000; Pashler, 1994; Poldrack
et al. 2005; Shanks & Channon, 2002; Waldron & Ashby,
2001), as well as prior work examining the effects of working
memory and cognitive load on behavioral accuracy perfor-
mance (Kahneman, Treisman, & Burkell, 1983; Longstaffe,
Hood, & Gilchrist, 2014; Treisman, Kahneman, & Burkell,
1983). In particular, our study is similar to the experiment of
Foerde and colleagues (2006), who utilized a feedback-based
version of the weather prediction task, consisting of both a
single-task control condition and a dual-task condition. In
the probe session (no feedback), the MTL BOLD signal cor-
related with accuracy and declarative knowledge for single-
task cues, whereas the BG BOLD signal correlated with ac-
curacy for dual-task cues. The authors concluded that this task

could be learned via either the MTL or BG, with engagement
of these regions depending on the task demands.

Although it is similar to that of Foerde and colleagues
(2006), our experiment differs from theirs in a few key ways:
First, we included an important control condition—the LMI
condition. Inclusion of this second dual-task condition
allowed us to compare hippocampal activation and behavioral
accuracy across dual-task conditions that manipulated hippo-
campal engagement to greater (HMI) and lesser (LMI) de-
grees, while controlling for multitasking. Second, we utilized
a less difficult probabilistic-learning task, one that does not
require the integration of information across multiple cues.
Third, we employed a different type of memory interference
task, to allow us to explore memory interference in a distinct
domain—namely visual rather than auditory.

Importantly, we replicated Foerde and colleagues’ (2006)
findings of theMTL’s involvement in feedback learning under
single-task conditions and the BG’s engagement in dual-task
conditions, as well as their observations of correlated activity
between the MTL and feedback learning under Bnormal^ con-
ditions (FC condition). Unlike Foerde and colleagues (2006),
however, the hippocampus and striatum were not exclusively
engaged during the single- and dual-task conditions, respec-
tively. In our paradigm, the ventral striatum, hippocampus,
and midbrain exhibited increased activation in the memory
interference conditions. We replicated these results in three
models—one that contained correct trials only, one that
modeled easy- and hard-probabilistic-cue trials, and one that
included trial-by-trial reaction time measures—thereby reduc-
ing the concern that these data were confounded by differ-
ences in accuracy or learning across session types. Foerde
et al. (2006) observed greater BG activation for single-task
than for dual-task correct trials, which differs from our obser-
vation of greater BG activation in the dual-task conditions
than in the control condition.

We attribute these divergent findings to differences in (a)
experimental paradigms, (b)dual-task conditions, and (c)
reward incentives across conditions. As we previously men-
tioned, unlike the weather prediction task, our feedback task
did not require participants to integrate associations across
multiple stimuli. This multicue integration may more heavily
recruit the MTL during learning. Alternatively, it is possible
that the use of our relatively simple probabilistic-learning task
resulted in recruitment of the hippocampus, as compared with
the more complex probabilistic-learning tasks previously used
(e.g., that of Knowlton et al. 1996). It is conceivable that
participants in our study may have used a more declarative
approach of memorizing the cue–outcome associations ex-
plicitly, thereby recruiting the hippocampus. However, given
that the behavioral performance was on average around 80%
for the FC and LMI sessions, it seems unlikely that they used a
completely declarative approach. If participants were explic-
itly memorizing the correct answers and optimizing their
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responses (as instructed), we would expect near 100% accu-
racy. Future work directly comparing probabilistic-learning
tasks that vary in difficulty and the amount of necessary cue
integration may help clarify this question.

Our study also shares features with two recent studies ex-
amining the contributions of incidental episodic memory
encoding to reward learning (Foerde, Braun, & Shohamy,
2013a; Wimmer et al., 2014). In these paradigms, better mem-
ory for incidentally encoded items co-occurred with worse
performance from immediate feedback in Parkinson’s patients
(Foerde, Braun, & Shohamy, 2013a), and correlated with re-
duced prediction error signaling in the striatum in healthy
individuals (Wimmer et al. 2014). Our findings complement
these studies by showing impaired feedback learning concur-
rent with a memory task. Importantly, our experiment differed
from these paradigms in the following key ways: (1)We uti-
lized intentional episodic retrieval as a dual-task condition,
rather than incidental episodic encoding, and (2)we used
two dual-task conditions—one serving as a control for cogni-
tive demand and the level of hippocampal interference. None-
theless, these paradigms highlight the usefulness of dual-task
designs to begin answering important open questions in the
field regarding the interplay between the hippocampus and
striatum in multiple learning types.

Limitations and alternative interpretations

A design limitation of the present study was that the FC ses-
sion always occurred as the first and fourth runs. Therefore,
the mean position of the FC session was earlier than those of
the other conditions. Two task constraints limited us to this
design: First, it was important to acquire a baseline measure of
feedback learning—so the FC session needed to be first. Sec-
ond, we did not want participants to complete the same con-
dition type consecutively or to complete more than two dual-
task conditions in a row, in order to limit fatigue. However, it
is possible that proactive interference and/or fatigue could
have contributed to our findings. Future iterations of this par-
adigm counterbalancing the condition order should address
this concern.

Another design choice to consider for future iterations is
that we did not test participants’ memory for the novel scenes
presented in the LMI session; participants were accurately
informed that their memory for the novel scenes would not
be tested. However, it may have been helpful to perform a
surprise memory test to examine whether participants had
incidentally encoded any of the scenes. This would lend an-
other interpretation of the data: Hippocampal activation in the
LMI session could have been due to incidental encoding of the
novel images. This interpretation is consistent with prior work
in the literature supporting hippocampal activation during in-
cidental encoding (see Schacter & Wagner, 1999, for a re-
view). However, it has also been shown that intentional

encoding elicits greater hippocampal activation than inciden-
tal encoding (for a discussion, see Martin, 1999). Even if our
LMI session recruited some amount of hippocampal activa-
tion due to incidental encoding, this would not invalidate our
argument that the hippocampus contributes to feedback learn-
ing. In our task, intentional encoding (the HMI session) re-
cruited more hippocampal activation and disrupted feedback
learning to a greater extent than incidental encoding (the LMI
session). However, future applications of this paradigm or of
other related paradigms should consider directly testing for
incidental encoding.

An alternative interpretation of the activity observed in our
a priori ROIs is that these effects were driven by task difficul-
ty. The two memory interference sessions, HMI and LMI,
were not equated in difficulty, with behavioral results indicat-
ing that the HMI session was more difficult for participants.
Therefore, one interpretation is that these regions were en-
gaged according to the level of task difficulty, with the in-
creased BOLD signal being observed in the most difficult
condition (HMI). However, the results from three additional
analyses—including cue difficulty, correct trials only, and
trial-wise reaction time measures—replicated our original
finding, thereby suggesting that the observed pattern of acti-
vation was not significantly driven by differences in difficulty,
learning/accuracy, or processing speed. It could be, however,
that some other construct—such as cognitive load, attention,
effort, and so on—significantly contributed to the results,
which will be an important topic for future studies. In addition,
future experiments should examine within-subjects measures
relating hippocampal BOLD activation with feedback learn-
ing to be sure that this effect was not driven by a subset of
participants. A caveat of this experiment is that it examined
only across-subjects relationships between BOLD activation
and our learning measures (feedback cue accuracy and scene
memory); however, examination of the correlation plots re-
vealed that the effects were not driven by one or a few
individuals.

Another important note is that the pattern of activation
that we observed was not specific to our a priori regions.
We performed a whole-brain analysis that revealed the en-
gagement of multiple regions, noted in Table 2. Although
some regions displayed a pattern of activation similar to
those in our areas of interest (e.g., the cingulate cortex), it
is important to note that the pattern of results that we ob-
served was not ubiquitous across task-engaged areas. For
example, task-evoked activity in bilateral premotor cortex
(x, y, z= 28, –5, 47; x, y, z= –27, –5, 50) did not show
differential responses to the HMI and LMI conditions, and
the opposite pattern of activation (HMI< LMI< FC) was
observed in the dorsomedial prefrontal cortex (x, y, z= 18,
52, 32). Future studies focused on whole-brain network
analyses may explore the contributions of multiple regions
to feedback learning.

874 Cogn Affect Behav Neurosci (2015) 15:861–877



An additional possibility is that the pattern of BOLD activ-
ity that we observed in the hippocampus, striatum, and mid-
brain is a learning signal associated with acquiring the proba-
bilistic cue values. Participants’ accuracy was better in the FC
and LMI sessions than in the HMI session. Therefore, the
enhanced activity to the HMI session could have been due
to the fact that participants were still acquiring the cue value
associations, whereas in the other sessions they acquired them
more quickly. This interpretation is consistent with literature
suggesting that activity within the striatum, hippocampus, and
midbrain corresponds to a learning signal (Delgado et al.
2005; Dickerson et al. 2011; Mattfeld & Stark, 2011; Schultz,
1998; Tricomi et al. 2004).

A last point to consider when interpreting the data is the
possibility that participants may have engaged in serial pro-
cessing in the present task. Given the relatively long allotted
response time in our paradigm (4 s), it is possible that partic-
ipants engaged in serial processing of the probabilistic cues
and scenes. One hypothesis is that in the dual-task conditions,
particularly in the HMI session, participants may have spent
less time deciding the value of the probabilistic cues. This
hypothesis offers one explanation for the observed reduced
accuracy in this session relative to the others. Contrary to this
hypothesis, however, the actual cue reaction times were sig-
nificantly greater in the HMI session (see Supplementary
Fig. 5). This result suggests that if participants were engaged
in serial processing, they were making a decision about the
scenes first. If so, this provides an explanation for why cue
accuracy was negatively impacted by the presence of the HMI
task, but memory performance was unaffected by cue accura-
cy. In support of this idea, memory performance did not
change across runs, as assessed by a ttest on the hit rate values
calculated for Run 1 and Run 2 [t(23)= 1.44, p= .16, d=
0.303].

Conclusions

The primary finding from this experiment suggests that the
hippocampus is important for learning via feedback. The hip-
pocampuswas engaged in all feedback-learning sessions, both
with and without additional memory interference. Important-
ly, hippocampal BOLD signal positively correlated with
feedback-learning accuracy. Furthermore, feedback accuracy
was reduced in the HMI session in which the hippocampal
BOLD signal correlated with declarative recognition, suggest-
ing both that our manipulation was successful and that the
hippocampus may contribute to the accuracy of feedback in-
formation. This result complements existing literature show-
ing that the hippocampus tracks feedback prediction errors
(Dickerson et al. 2011; Foerde & Shohamy, 2011a) and dis-
criminates between correct and incorrect trials (Dobryakova&
Tricomi, 2013; Li et al. 2011). These and related emerging

data (Cincotta & Seger, 2007; Dickerson et al. 2011; Foerde,
Race, et al., 2013b; Foerde & Shohamy, 2011a; Li et al. 2011;
Mattfeld & Stark, 2011; Okatan, 2009; Poldrack et al. 2001;
Wimmer & Shohamy, 2012) strongly support a role for the
hippocampus in feedback learning.
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