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Regions within the medial temporal lobe and basal ganglia are thought to subserve distinct memory systems
underlying declarative and nondeclarative processes, respectively. One question of interest is how these
multiple memory systems interact during learning to contribute to goal directed behavior. While some
hypotheses suggest that regions such as the striatum and the hippocampus interact in a competitive manner,
alternative views posit that these structures may operate in a parallel manner to facilitate learning. In the
current experiment, we probed the functional connectivity between regions in the striatum and hippocampus
in the human brain during an event related probabilistic learning task that varied with respect to type of
difficulty (easy or hard cues) and type of learning (via feedback or observation). We hypothesized that the
hippocampus and striatum would interact in a parallel manner during learning. We identified regions of
interest (ROI) in the striatum and hippocampus that showed an effect of cue difficulty during learning and
found that such ROIs displayed a similar pattern of blood oxygen level dependent (BOLD) responses,
irrespective of learning type, and were functionally correlated as assessed by a Granger causality analysis.
Given the connectivity of both structures with dopaminergic midbrain centers, we further applied a
reinforcement learning algorithm often used to highlight the role of dopamine in human reward related
learning paradigms. Activity in both the striatum and hippocampus positively correlated with a prediction
error signal during feedback learning. These results suggest that distinct human memory systems operate in
parallel during probabilistic learning, and may act synergistically particularly when a violation of expectation
occurs, to jointly contribute to learning and decision making.
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Introduction

The theory of multiple memory systems has been prominently
displayed across species suggesting that the medial temporal lobes
(MTL), in particular the hippocampus, are involved in declarative
learning while the basal ganglia (BG) system, primarily the striatum,
supports nondeclarative learning (Sherry and Schacter, 1987; Squire,
1992; Squire and Zola, 1996). A question of debate, however, is how
these distinct structures interact to contribute to learning and goal
directed behavior. Some research suggests that this interaction may
be competitive, such that when one system is engaged, it may inhibit
or decrease activation of the other system (e.g., Poldrack and Packard,
2003). Evidence for this type of interaction has been observed in
animal research (Lee et al., 2008; Packard and Knowlton, 2002;
Packard and McGaugh, 1996) and supported by several human
functional magnetic resonance imaging (fMRI) studies of probabilistic
learning (Foerde et al., 2006; Poldrack et al., 2001; Seger and Cincotta,
2006).

Accumulating data, however, suggests that the interactions
between these two systems may not be purely competitive. Rather,
an alternative hypothesis posits that the BG and MTL may make
parallel contributions to learning (e.g., Atallah et al., 2008; Cincotta
and Seger, 2007; Tricomi and Fiez, 2008; Voermans et al., 2004;White
and McDonald, 2002). We adopt White and McDonald's definition of
parallel learning systems, in which the authors state that information
passes independently through each system. Each system receives the
same information but specializes in representing different aspects of
the information and may either simultaneously influence behavior in
parallel or may interact directly in either a cooperative or a
competitive manner (2002). Part of this argument stems from the
anatomical and functional neuroconnectivity between the hippocam-
pus, striatum, and dopaminergic cells in the midbrain (Lisman and
Grace, 2005). Lisman and Grace (2005) propose a dynamic model by
which the hippocampus detects the entrance of novel information
and sends this novelty signal to the ventral tegmental area (VTA) in
the midbrain via projections through the subiculum, nucleus
accumbens, and ventral pallidum. The dopaminergic neurons located
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in the VTA fire in response to this novel information, releasing
dopamine into the hippocampus where it enhances long term
potentiation; thus forming a functional loop between the hippocam-
pus, nucleus accumbens, and midbrain which specializes in novelty
detection. However, this is not the sole anatomical connection
between the striatum and the hippocampus. There is also a direct
projection from the hippocampus to the ventral medial caudate
nucleus in the rodent (Jung et al., 2003). Combining this information
with the knowledge of the existence of multiple spiral loops between
the striatum and the midbrain dopaminergic centers (Haber, 2003), it
is plausible that there may be interactions between the hippocampus,
midbrain DA areas, and more dorsal regions of the striatum, via a
ventromedial to dorsolateral movement of information through these
spiral loops.

To expand upon these interactions, it has been proposed that
dopamine's role in reward related learning, which has been typically
associated with striatal function (for review see Schultz, 2002), also
facilitates long term memory formation in humans, which is more
traditionally associated with hippocampal function (Adcock et al.,
2006; Shohamy and Adcock, 2010; Shohamy and Wagner, 2008;
Wittmann et al., 2005). While a role for dopamine facilitating
hippocampal memory formation is well characterized in studies
involving non human animals (Packard and White, 1991), only
recently has this evidence been extended into human neuroimaging
experiments (Adcock et al., 2006; Shohamy and Wagner, 2008;
Wittmann et al., 2005). Considering the conflicting evidence regard-
ing the nature of the interactions between these memory systems in
humans, it is important to revisit the idea of competitive systems
while incorporating reinforcement learning concepts that account for
potential dopaminergic influences. Thus, the goal of this paper was to
probe the interactions between the BG and MTL during probabilistic
learning in humans using fMRI and a reinforcement learning model.

Probabilistic category learning has been commonly used in the
literature to examine both nondeclarative and declarative learning
(e.g., Knowlton et al., 1994; Poldrack et al., 2001; Shohamy et al.,
2004). Here, we used a variant of a probabilistic learning task
(Delgado et al., 2005), where participants learned the value of easy
and hard cues either through trial and error (feedback learning) or via
paired association (observation learning), while tracking BOLD
responses in both the BG and MTL during an initial learning phase
and in a subsequent test phase. Additionally, given the hypothesized
role of dopaminergic midbrain structures in reward processing and
long term memory formation, we employed a reinforcement learning
algorithm to assess the involvement of the BG and MTL during the
generation of prediction error signals during probabilistic learning.
We hypothesized that irrespective of the type of probabilistic
learning, both structures would show a pattern of activity more
characteristic of parallel processing rather than competition. Specif-
ically we hypothesized that both the striatum and the hippocampus
would be engaged during learning, but rather than showing signs of
competition (negative correlations) we predicted observing signs of
parallel activity (voxels within both ROIs involved in probability
learning irrespective of learning type).
Materials and methods

Participants

Seventeen right handed adults participated in this study (nine
females). All participants were screened for a history of neurologic
and psychiatric illness as well as head injury (mean age 24 years,
SD 4.1). One participant was excluded due to equipment failure in the
middle of the session (scanner malfunction). Final analysis was
therefore conducted on 16 participants. This study was approved by
the Institutional Review Boards of Rutgers University and the
University of Medicine and Dentistry of New Jersey. All participants
gave informed consent prior to participating in the experiment.

Experimental paradigm

The paradigm was a variant of a previously used reward learning
task (Delgado et al., 2005) adapted to incorporate features of other
probabilistic learning paradigms (e.g., Poldrack et al., 2001; Shohamy
et al., 2004). In this “card game,” participants were expected to learn
the correct response associated with several cues for indirect
monetary rewards. There were two distinct parts of the game: a
learning phase and a test phase (Fig. 1). During the initial learning
phase, participants were instructed to learn the value of several visual
cues (e.g. a circle). The participants were informed that the numerical
value of each cue was either higher (6–9) or lower (1–4) than the
number 5. Participants were not required to learn the exact value of
each cue (e.g. 3), but simply indicate if each cue was higher or lower
than 5. They were tested for accuracy in a subsequent test phase.

We manipulated two independent variables within each experi-
mental phase: the type of learning (feedback or observation) and the
predictive outcome of the visual cues, or cue difficulty (easy or hard;
see Fig. 1). One type of learning was feedback-based and designed to
be more nondeclarative like (Fig. 1A). During feedback learning
blocks, participants saw a visual cue (e.g. a circle) and made a button
press to guess the numerical value of the cue (higher or lower than 5).
Learning occurred via feedback contingent on the participant's
response which indicated a correct (check mark), incorrect (X
symbol), or missed (a pound sign) trial.

A second type of learning was observation and was designed to be
more declarative like (Fig. 1B). During observation learning blocks,
participants saw each visual cue paired with an arrow, which
provided information about the probabilistic value of the visual cue.
An upward facing arrow indicated a numerical value higher than 5
while a downward facing arrow indicated a numerical value lower
than 5. Learning occurred via observation of the association between
the cue and the probabilistic information provided by the arrow.
Participants were requested to make a button press indicating their
prediction regarding the value of the cue (higher or lower than 5),
followed by a non-informative message indicating if their answer was
or was not recorded (missed trial). We requested that participants
make a button press to indicate the value of the cues in the
observation blocks to try to equate the difficulty and motor
requirements across learning types, as well as provide a comparable
measure of learning (i.e., prediction of cue value). Specifically,
participants were instructed to optimize their responses. They were
told that as the value of the cues was probabilistic, the direction of the
arrowwould change. For example, if the square is 85% lower than five
it is also 15% higher than five. Participants were instructed to pay
careful attention to the arrows and to try to determine what the value
of each cue was most of the time. On those few inconsistent trials
(square is higher than five) they were instructed to push the button
indicating “lower,” if that is what they believed the value of the cue to
be most of the time. Therefore, participants were actively making a
decision regarding each cue's value and were not passively pushing
the button that always matched the direction of the arrow. Behavioral
accuracy was scored according to participants' actual performance.
That is, since we instructed participants to optimize their responding,
if they always pushed the button indicating a lower than five
response, for the square for example, they would receive a score of
100% correct; if they followed the arrows exactly they would
probability match and be 85% correct.

The two versions of our task therefore have a few key differences
in both the cue presentation and the feedback phases of the trials. In
the feedback version, the cue presentation phase consists only of the
cue on the screen. In the observation version of the task, the cue
presentation phase consists of two stimuli on the screen: the cue as



Fig. 1. Experimental design of probabilistic learning task. (A) Example of a feedback learning trial (FB), where participants are presented with a cue and asked to make a response if
the value of that cue was higher or lower than “5” (2 s), followed by a feedback presentation depicting either a correct, incorrect, or missed trial (2 s), and a jittered inter-trial-
interval (ITI; 2–14 s). (B) Example of an observation learning trial (OB), where participants are presented with a cue and an arrow that provides information about the value of that
cue, while being asked tomake a response indicating the probabilistic cue value (2 s). This is followed by a non informative feedback response indicating if a participant's answer was
recorded or not (2 s) and a jittered ITI (2–14 s). (C) Example of a test phase trial where participants are presented with a cue and asked tomake a response about the value of that cue
(self timed), followed by a jittered ITI (6–14 s). Feedback is not provided in the test phase.
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well as an arrow which provides information regarding the cue's
value. During the feedback phase, feedback is given to the participant
following his or her response for the feedback version. In the
observation version, participants receive a message indicating
whether or not their response has been recorded. It is hypothesized
that the feedback version is akin to trial and error learning, considered
to be more similar to nondeclarative types of learning, as the
participant must learn which cue is associated with what value via
guessing (initially) and subsequently receiving feedback. The non-
declarative component of this version lies in the trial and error nature
of the feedback trial structure, which has been known to recruit
regions of the BG (Poldrack et al., 2001; Shohamy et al., 2008).
Furthermore, it is thought that the observation version of the task is
akin to paired-associate learning, considered to be more similar to
declarative types of learning, as the participant views both the cue and
its value simultaneously and may therefore overtly memorize the
association. The declarative component of this version is the cue
presentation phase, where participants may engage in memorization
strategies, and has been linked with MTL function, particularly the
hippocampus (Poldrack et al., 2001). However, these tasks may not be
exclusively solved via one learning mechanism or another. This issue
will be addressed further in Discussion.

The other independent variable manipulated was cue difficulty (the
probability of the visual cues). The value of each cue was probabilistic
and the exact values were unknown to the participants. The cue values
were either 85% predictive of the outcome (higher or lower than 5),
hereafter referred to as “easy” cues, or 65% predictive of the outcome
(higher or lower than 5), hereafter referred to as “hard” cues.

The learning phase consisted of 160 total trials, divided into 4 blocks
of 40 trials each. The taskwas pseudoblocked by learning type such that
each participant completed 2 alternating blocks of both feedback and
observation learning. Participants were presented with eight different
visual cues: four in the observation learning block and four different
cues in the feedback learning block (two easy and two hard cues per
block). Each trial began with a 2-s presentation of a visual cue which
prompted a behavioral response. This was followed by a 2 second
feedback time period and a jittered inter trial interval (ITI, 2 to14
seconds) before onset of the next stimulus (Fig. 1). Participants were
aware of the type of learning block by the color coded visual cues (e.g.
feedback cues were pink and observation cues were blue). Both cue
color and block order were counterbalanced across participants, while
cue presentation order was randomized within each block.

The test phase was presented immediately following the learning
phase and required participants to make an accuracy judgment (i.e.,
higher or lower than 5) to the presented visual cues (Fig. 1C). All
8 cues were presented in the test phase; although neither feedback
nor observation information (e.g., arrows)was provided. Additionally,
two novel cues were presented in the test phase to provide a non
studied control condition. Each trial in the test phase consisted of
visual cue presentation which prompted a behavioral response (self
timed) followed by a jittered ITI (6 to14 s) before onset of the next
trial. The test phase consisted of 30 trials, including 3 presentations of
each of the 10 visual cues. Participants' accuracy was also recorded
during a follow up behavioral only test session administered between
1 and 7 days following initial task participation in the laboratory
(M=2.63 days, SD=1.63).

The task was programmed with E PRIME V.2.0 (PST, Pittsburgh)
and presented to participants in the fMRI scanner via a back projection
system. Participants made behavioral responses using a MRI compat-
ible button box. Prior to beginning the experiment, participants were
instructed on how to play the game and played a short version of the
game with different stimuli for practice purposes. Participants'
compensation consisted of a minimum of $50 for the 2-day
experimental sessions, but also included additional incentives based
on their performance. Specifically, participants were instructed they
could earn bonus money based on their test phase accuracy bringing
their total compensation to an amount ranging from $50 to $65.

fMRI acquisition and analysis

A 3 Tesla Siemens Allegra scanner was used to collect the
structural (T1 weighted MPRAGE: 256×256 matrix; FOV=256 mm;
176 1 mm sagittal slices) and functional images (single shot echo EPI
sequence; TR=2000 ms, TE=25 ms; FOV=192 cm; flip angle=80°;
matrix=64×64; slice thickness=3 mm). We obtained forty contig-
uous oblique axial slices (3×3×3 mm voxels) parallel to the anterior
commissure, posterior commissure line. BrainVoyager QX software
(Version 1.10; Brain Innovation, Maastricht, The Netherlands) was
used to preprocess and analyze the functional data. Preprocessing
consisted of motion correction (six parameter, three dimensional
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motion correction), spatial smoothing (4 mm, FWHM), voxel wise
linear detrending, high pass filtering of frequencies (3 cycles per time
course), and normalizing the data to Talairach sterotaxic space
(Talairach and Tournoux, 1988). A canonical two gamma hemody-
namic response function was used to convolve the events of interest.

During the learning phase, we examined neural activity across the 4
second period where learning occurred (2-s stimulus presentation/
participant response+2-s feedback presentation).We chose to conduct
the analysis in this manner due to the different nature of the feedback
andobservation trials. Relevant information in the feedback trials occurs
during the feedback presentation (last 2 s of the trial) whereas relevant
information in the observation trials occurs in the cue presentation
phase (first 2 s of the trial). Thus,we examined the BOLD activity during
the initial 4 second window of a trial to most accurately compare
feedback and observation learning. We conducted a random effects
general liner model (GLM) analysis using learning type (observation
and feedback) and cue difficulty (easy and hard) as predictors.
Additionally, 6 motion parameters were included as regressors of no
interest to further control for motion related issues. From this GLM, we
generated statistical parametric maps (SPM) thresholded at pb0.005,
using a cluster threshold with an extent of 5 contiguous voxels
(equivalent to 135 mm3 of tissue in 1×1×1 mm increments). Unless
otherwise noted, for all SPMs generated during learning phase analyses,
a correction formultiple comparisonswas employedvia the cluster level
statistical threshold estimator plugin in the BrainVoyager analysis
package (Forman et al., 1995; Goebel et al., 2006). This tool uses Monte
Carlo simulations to determine the likelihood of observing clusters of
various sizes. First, the map is thresholded at the desired level (e.g.,
pb0.005) and then a whole brain correction is performed based on an
estimate of the spatial smoothness of themap selected andMonte Carlo
simulations which estimate the rate of cluster level false positives.
Following 1000 iterations (the recommended number), the minimum
cluster size threshold which produces the desired cluster level false
positive alpha rate (5% was chosen) is automatically applied to the
selected map. For each analysis, all active clusters in the resulting map
are used to make a table which summarizes the number of clusters
above thedesired threshold for eachsize.When theanalysis is complete,
each cluster size is assigned analpha value determined by the frequency
of its occurrence in the SPM. Therefore, thismethod corrects formultiple
cluster tests in themap and produces a cluster level false positive rate of
5%.

In order to investigate activity in the brain during learning, an
Analysis of Variance (ANOVA) was conducted using learning type
(feedback and observation) and cue difficulty (easy and hard) as
within subjects factors. The first SPM of interest investigated a main
effect of cue difficulty. This primary analysis allowed for a non biased
examination of the relative engagement and pattern of activity in the
BG, particularly the striatum, and the MTL, with focus on the
hippocampus, during the learning phase of the task. Regions of
interest (ROIs) were defined based on the results from the main effect
of cue difficulty analysis and the BOLD signal (characterized by mean
parameter estimates or beta weights) of these a posteriori ROIs (e.g.,
BG) was examined in order to explore differences between feedback
and observation learning in a post hoc analysis. Additionally, a
potential effect of time was examined during the learning phase. In
order to model time, the learning phase was separated according to
block/run. The BOLD signal was extracted from the a posterior regions
of interest (e.g., hippocampus and caudate nucleus) for the first
learning block/run of each learning type (e.g., observation trials 1 to
40; feedback trials 1 to 40) and again for the second learning block/
run of each learning type (e.g., observation trials 41 to 80; feedback
trials 41 to 80). The mean BOLD signal from the “early” learning run
was then compared to the mean BOLD signal from the “late” learning
run in both ROIs for both learning types. The second SPM of interest
investigated a main effect of learning type. The third SPM of interest
examined potential interactions of learning type and cue difficulty.
During the test phase, we examined neural activity across the entire
trial (stimulus onset and participant response). A random effects GLM
was used with observation (easy and hard), feedback (easy and hard),
and novel cues as predictors, along with 6 motion parameters as
regressors of no interest. FromthisGLM,wegenerated SPMs thresholded
at pb0.005, that contrasted studied (observation and feedback cues
collapsed across difficulty) vs. non studied (novel) cues. The cluster level
statistical threshold estimator plugin was also used on the SPM
generated for the test phase producing a cluster level false positive
rate of 5%. Any ROIs which did not withstand correction are clearly
labeled and should be interpreted with caution (Poldrack et al., 2008).
Parameter estimates were extracted from the resulting ROI and used for
further post hoc analyses. Post hoc analyses conducted on the learning
phasebehavior andneuroimagingdata aswell as the test phase behavior
andneuroimaging datawhich consisted ofmore than two t testswithin a
family of comparisonswere corrected formultiple comparisonswith the
sequential Bonferroni correction (Holm, 1979; Rice, 1989).

Granger causality analysis

A Granger causality analysis was performed on the learning phase
data to examine both functional and effective connectivity in the
brain. The purpose of this analysis was to determine the relationship
between a seed region (x) and activity within the rest of the brain.
Geweke (1982) proposed a measure of linear dependence, Fx,y
between two hypothetical times series of data, x[n] and y[n], using
vector autoregressive models. Fx,y consists of the sum of three distinct
components:

Fx;y = Fx→y + Fy→x + Fx⋅y

Fx→y is a measure of the directed influence from x to y;
examining if past values of x improve the current predicted
value of y.

Fy→x is a measure of the directed influence from y to x;
examining if past values of y improve the current predicted
value of x.

Fx⋅y is a measure of the undirected instantaneous influence of x
and y. This measure incorporates the current value of x or y
into the model which already contains the past values of x
and y.

Therefore, the Granger causality analysis measures both directed
(Fx→y and/or Fy→x) as well as undirected instantaneous influence (Fx⋅y)
between a specified seed region of the brain (x) and the rest of the brain
(see Goebel et al., 2003; Roebroeck et al., 2005 for more details).

A Granger causality analysis was conducted to specifically probe
interactions between the hippocampus and the striatum during
probabilistic learning. The hippocampus ROI obtained from the main
effect of cue difficulty analysis from the learning phase ANOVA was
used as the principle seed region. As a caution for interpretation of the
Granger causality results, it must be kept in mind that the seed region
used for this analysis was obtained at a threshold of pb0.005,
uncorrected for multiple comparisons. We chose this ROI as the seed
region given the direct anatomical projections from the hippocampus
to the basal ganglia (Kelley and Domesick, 1982). Separate functional
and effective connectivity maps for the feedback and observation data
were calculated. For each participant's data, the two feedback runs
were combined to form one feedback map while the two observation
runs were combined to form one observationmap.We then examined
connectivity across the entire run (first to last time point, 240 volumes
for each run). Next we combined all the feedback maps and all the
observation maps from each participant to form one group map for
the feedback data and one group map for the observation data
(n=16) at a threshold of pb0.0001 and a cluster threshold with an



Fig. 2. Accuracy results during learning and test phases. (A) Participants’mean accuracy
in the learning phase plotted according to learning type (OB or FB) and cue difficulty
(easy and hard). Participants’ performance was better for easy compared to hard cues in
both the observation and feedback trials. (B) Participants’ mean accuracy during the
test phase plotted according to type of material (OB, FB, and novel) and time (day 1 and
day 2). Mean accuracy for previously learned information (OB and FB) is consistently
better than novel information. Error bars represent standard error of the mean (s.e.m.).
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extent of 7 voxels for the observation maps and 8 voxels for the
feedback maps (correcting to a cluster level false positive rate of 5%).
Last, standard second level statistics were performed on the group
maps; specifically we ran a t test on the group data. Reported results
represent functional connectivity data (instantaneous influence
without directionality information; Fx⋅y) as effective connectivity
(Fx→y and/or Fy→x) results were not observed between the a posteriori
regions of interest. Finally, as a control analysis, a second Granger
causality analysis was performed in an identical manner using the
caudate nucleus ROI obtained from the main effect of cue difficulty
analysis from the learning phase ANOVA. Maps were thresholded at
pb0.0005 and a cluster threshold of 12 (correcting to a cluster level
false positive rate of 5%) unless otherwise stated.

Prediction error analysis

We applied a reinforcement learning model to the behavioral
accuracy data for the feedback trials only. The prediction error (PE)
regressorwas calculated based on aQ learningmodel (Watkins, 1989).
In this model, the expected values for actions (indicating whether the
value of the cue was higher or lower than 5) were updated using the
Bellman equation and subjects’ actual choices were determined by a
softmax function of action values. Three parameters were used in the
model: (1) learning rate, λ (2) action values, w↑ and w↓ (3) softmax
function temperature, m. Optimal values for these parameters were
estimated using a maximum likelihood estimation algorithm (MLE). A
single set of free parameters was used for all participants when
modeling the PE regressor. The prediction error is represented by δ; r is
equal to the amount of reward, which in the feedback trials was either
0 for incorrect trials or 1 for correct trials; i=trial number and, j
represents action type: guessing a high or low value.

wj;i + 1←wj;i + λδ ð1Þ

δ = r–wj;i ð2Þ

The prediction errors generated from the above equations using
the optimal parameters were used as a regressor in the GLM
neuroimaging analysis. We also included two additional predictors,
trial event andmissed responses, as well as the six motion parameters
as regressors of no interest in the analysis. The PE was coded during
the 2-s feedback presentation phase for the feedback learning trials
only. The resulting SPMwas generated at a threshold of pb0.005 with
a voxel contiguity threshold of 5 continuous voxels (correcting to a
cluster level false positive rate of 5%) and probed regions of the brain
that correlated with PE during probabilistic learning in the feedback
session.

Results

Behavioral results

Learning phase: accuracy
In order to examine accuracy differences between the learning

types and levels of cue difficulty, a 2 (learning type: feedback vs.
observation)×2 (cue difficulty: easy vs. hard) repeated measures
ANOVAwas performed. Amain effect of cue difficulty, (F(1,15)=16.04;
pb0.01), no main effect of learning type (F(1,15)=1.47; pN0.05), and
no significant interaction (F(1,15)=0.85; pN0.05) were observed
(Fig. 2A). Post hoc t tests were performed to further examine the
main effect of cue difficulty within and across conditions. The results
revealed that within both the observation (t(15)=2.54; pb0.025) and
feedback (t(15)=2.45; pb0.05) trials participants performed signifi-
cantly better on easy compared to hard cues. Performance was nearly
significantly better for easy cues during observation compared to
feedback learning (t(15)=2.24; p=0.04; trend after sequential
Bonferroni correction), with no accuracy differences between hard
cues (t(15)=0.23; pN0.05).

Additionally, we examined changes in accuracy for feedback and
observation trials over time by comparing performance early (first
block) and late (second block) during the learning phase. A 2
(learning type: feedback vs. observation)×2 (cue difficulty: easy vs.
hard)×2 (time: early vs. late) repeated measures ANOVA revealed a
main effect of cue difficulty (F(1,15)=16.09; pb0.01), a main effect of
time (F(1,15)=35.07; pb0.01), nomain effect of learning type (F(1,15)=
1.38; pN0.05) and no significant interactions. The significantmain effect
of time was driven by an increase in accuracy for the hard, rather than
the easy trials over time.

Test phase: accuracy
Differences in accuracy between learning material and across the

two test sessions were investigated using a 3 (learning material:
observation, feedback, novel)×2 (time: immediate vs. follow up)
repeated measures ANOVA. A main effect of learning material
(F(1.90,28.43)=14.04; pb0.01), no main effect of time (F(1,15)=0.11;
pN0.05), and a marginally significant interaction (F(1.36,20.36)=3.33;
p=0.07) were observed (all factors are Greenhouse–Geisser cor-
rected; Fig. 2B). Themain effect of learningmaterial highlights greater
accuracy for studied (feedback and observation) compared to non-
studied (novel) material. Post hoc t tests revealed that participants'
performance in the feedback version of the task trended to decline
in the follow up test (t(15)=2.13; p=0.05; trend after sequential

image of Fig.�2
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Bonferroni correction), but no differences were observed for obser-
vation performance (t(15)=1.04; pN0.05). As expected, participants'
performance in the novel condition did not differ over time (t(15)=
1.01; pN0.05).

During the individual test phases, no differences between feedback
and observation trials or between easy and hard cues were observed.
In the immediate test phase, for example, a 2 (learning type:
observation vs. feedback)×2 (cue difficulty: easy vs. hard) repeated
measures ANOVA was performed to examine differences in accuracy
between learning types and the level of cue difficulty (excluding the
novel information and examining only the previously studiedmaterial
during the immediate test session). This analysis revealed no
significant main effect of learning type (F(1,15)=0.06; pN0.05), no
significant main effect of cue difficulty (F(1,15)=0.23; pN0.05), nor a
significant interaction (F(1,15)=1.92; pN0.05), suggesting that parti-
cipants successfully learned contingencies independent of learning
type and cue difficulty. A similar 2×2 repeated measures ANOVA was
performed for the follow up test phase examining potential
differences between learning type and level of cue difficulty. No
significant main effect of learning type (F(1,15)=0.51; pN0.05), no
significant main effect of cue difficulty (F(1,15)=0.37; pN0.05), nor a
significant interaction (F(1,15)=0.00, pN0.05) were observed.

Neuroimaging results

Learning phase: main effect of cue difficulty
From the learning type×cue difficulty ANOVA, a main effect of cue

difficulty was examined (Supplementary Table 1). A region of the left
caudate nucleus was involved in processing a main effect of cue
difficulty (Fig. 3), along with a cluster in the left hippocampus which
Fig. 3.Main effect of cue difficulty analysis during the learning phase identified regions of int
z=−36, −28, −8). Graphs depict mean parameter estimates for both the (B) left caudate
represent s.e.m.
was uncorrected. Mean parameter estimates from these two a
posteriori ROIs were then extracted for further analyses. In the left
caudate nucleus (x, y, z=−15, 20, 7; Fig. 3A and B), the pattern of
BOLD responses was similar for both feedback and observation
learning sessions, with no differences between learning type when
collapsed across cue difficulty (t(15)=1.00; pN0.05). Post hoc t tests
reveal a greater BOLD response for easy than hard cues in both learning
types [feedback: (t(15)=5.02; pb0.025); observation: (t(15)=3.99;
pb0.05]. In the left hippocampus ROI (x, y, z=−36, −28, −8; Fig. 3C
and D) a marginally significant effect was observed when comparing
mean parameter estimates from the feedback and observation sessions
(t(15)=2.01; p=0.06), with a trend towards greater BOLD responses
during the observation session. This difference was primarily driven by
performance during the hard trials (t(15)=2.40; p=0.03; trend after
sequential Bonferroni correction). Post hoc t tests indicate a greater
BOLD response for easy than hard cues in the feedback trials (t(15)=
3.73; pb0.025) and a trend towards a greater response for easy
compared to hard cues in the observation trials: (t(15)=1.79; p=0.09).

Finally, we examined changes in the mean BOLD signal for feedback
and observation trials over time by comparing the BOLD signal early
(first block) and late (second block) during the learning phase. A 2
(learning type: feedback vs. observation)×2 (cue difficulty: easy vs.
hard)×2 (time: early vs. late) repeatedmeasures ANOVA conducted on
themean BOLD signal from the caudate nucleus revealed nomain effect
of learning type (F(1,15)=0.82; ; pN0.05), a main effect of cue difficulty
(F(1,15)=95.47; pb0.01), no main effect of time (F(1,15)=1.97; ;
pN0.05), and no significant interactions. Mean parameter estimates
approached a significant increase as learning progressed for the
observation hard cues in the caudate nucleus (t(15)=2.25; p=0.04;
trend after sequential Bonferroni correction; Supplementary Fig. 1A).
erest in the (A) left caudate nucleus (x, y, z=−15, 20, 7) and (C) left hippocampus (x, y,
nucleus and (D) left hippocampus across learning type and cue difficulty. Error bars
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272 K.C. Dickerson et al. / NeuroImage 55 (2011) 266–276
The same 2×2×2 repeated measures ANOVA was conducted on the
mean BOLD signal from the hippocampus ROI and revealed a trend
towards amain effect of learning type (F(1,15)=3.36; ; p=0.09), amain
effect of cue difficulty (F(1,15)=20.69; pb0.01), a main effect of time
(F(1,15)=5.35; ; pb0.05), and a trend towards a significant interaction
between learning type and time (F(1,15)=3.76; ; pb0.07). Post hoc
comparisons revealed a nearly significant increase for the feedback hard
cues in the hippocampus as learning progressed (t(15)=2.38; p=0.03;
trend after sequential Bonferroni correction; Supplementary Fig. 1B).

Learning phase: Main effect of learning type
From the same learning type×cue difficulty ANOVA, a main effect

of learning type was examined (Supplementary Table 2). This analysis
revealed activation in different regions of the basal ganglia, specifi-
cally the right ventral portion of the head of the caudate nucleus (x, y,
z=6, 3, 4) and the left ventral caudate nucleus extending into the
globus pallidus (x, y, z=−12, 2, 4; Supplementary Fig. 2). No
differences with respect to cue difficulty were observed in these ROIs.
At the threshold of pb0.005, no voxels within the hippocampus were
observed.

Learning phase: interaction of cue difficulty and learning type
An investigation of the interaction between learning type and cue

difficulty from the ANOVA revealed activation in an area of the left
medial prefrontal cortex. Post hoc t tests conducted on the mean
parameter estimates extracted from this region indicated greater
activity for observation easy compared to hard trials (t(15)=4.63;
pb0.025); but no differences in difficulty for the feedback trials (t(15)=
1.26; pN0.05). The interaction is driven by a greater BOLD response to
observation compared to feedbackeasy cues (t(15)=2.72; pb0.025) and
a trend towards a greater response to feedback than observation hard
cues (t(15)=1.94; p=0.07).

Test phase
In the test phase, contrasting studied (observation and feedback

cues) versus non-studied (novel cues) information was used to
identify ROIs involved in memory processes triggered by cue
presentation (Supplementary Table 3). This contrast produced one
active region within the medial temporal lobe—the parahippocampal
gyrus (x, y, z=−21,−40,−8; Supplementary Fig. 3A and B). Post hoc
t tests on the mean parameter estimates extracted from the
parahippocampal ROI revealed no significant difference between
observation and feedback cues (t(15)=0.37; pN0.05). Regions of
interest just outside the hippocampus (x, y, z=−24, −22, −5), and
the right caudate nucleus (x, y, z=6, 5, 16) were also observed in this
contrast, but did not survive correction at the cluster level.

Correlations within the neuroimaging data
We performed a series of Pearson's correlations to explore the

relationship between the caudate nucleus and hippocampus during
the learning phase. We observed a significant positive correlation
between mean parameter estimates from the caudate nucleus and
hippocampus ROIs extracted from the main effect of cue difficulty
analysis during the observation learning session (r=0.498, p=0.05)
(Supplementary Fig. 4A). While a similar result was not apparent
during the feedback session, a trend towards a positive correlation
between the caudate nucleus and hippocampus was observed during
later stages of feedback learning, specifically during easy cue trials
when participants’ expectations were violated by the delivery of
incorrect feedback (r=0.530, p=0.08) (Supplementary Fig. 4B).

Granger causality analysis
To more effectively assess the level of connectivity between the

hippocampus and striatum during probabilistic learning, we con-
ducted a Granger causality analysis. This analysis examined functional
connectivity in the brain using the left hippocampus from the main
effect of cue difficulty analysis as the principle seed region. The
resulting Granger causality maps highlight correlations between the
hippocampus (seed region) and regions of the striatum during both
feedback and observation probabilistic learning sessions. Specifically,
this analysis yielded instantaneous influence between the hippocam-
pus and two regions of the right caudate nucleus during feedback
learning (x, y, z=14, 18, 13) and (x, y, z=14, 12, 19; not shown), as
well as nearly the identical ROIs in the caudate nucleus (x, y, z=14,
18, 13) and (x, y, z=14, 10, 18; not shown) and one region of the right
ventral putamen during observation learning (x, y, z=22, 3, −4; not
shown) (Fig. 4). The second Granger causality analysis performed as a
control using the caudate nucleus as the seed region revealed
instantaneous influence between the caudate nucleus and bilateral
hippocampal regions during observation learning (x, y, z=−31,−38,
−3 and x, y, z=32,−29,−12; not shown; corrected to a cluster level
false positive rate of 5%; Supplementary Fig. 5A) as well as a loci near
the right hippocampus during feedback learning (x, y, z=29, −8,
−15; uncorrected for multiple comparisons; Supplementary Fig. 5B).

Prediction error analysis
Midbrain dopaminergic neurons are believed to project to both the

striatum and the hippocampus (Lynd-Balta and Haber, 1994; Scatton
et al., 1980) and contribute to learning and memory processes
(Lisman and Grace, 2005). One correlate of dopaminergic physiolog-
ical firing during reward related learning is the prediction error (PE)
learning signal (Schultz et al., 1997). Based on our observation of
mutual activation of the hippocampus and striatum during the
learning phase, we applied a reinforcement learning algorithm to
our behavioral data to explore purported dopaminergic influences in
these regions during probabilistic learning. The PE estimates gener-
ated from the reinforcement learning model applied to the feedback
session were used as a PE regressor in a GLM. The resulting SPM
revealed the left putamen (x, y, z=−30, 2, 4) and the right
hippocampus (x, y, z=27, −28, −14) as regions whose activation
positively correlated with the PE signal (Fig. 5). Thus, the use of a
reinforcement learning model during feedback learning engaged the
typically reported prediction error signals in the striatum (Abler et al.,
2006; McClure et al., 2003; Pagnoni et al., 2002), while also engaging
the hippocampus, which has been more often associated with
mismatch signals (Ploghaus et al., 2000).

Discussion

In this experiment, we investigated the interaction of multiple
memory systems during probabilistic learning while incorporating a
reinforcement learning algorithm that is posited to reflect dopami-
nergic modulation of the basal ganglia. Several studies have suggested
that memory systems dependent on the BG and MTL compete with
each other during learning (Foerde et al., 2006; Lee et al., 2008;
Poldrack et al., 2001). However, our data are inconsistent with the
idea of competitive interactions, and instead support the alternative
hypothesis that such memory systems work in parallel during
probabilistic learning (Atallah et al., 2008; Cincotta and Seger, 2007;
Voermans et al., 2004). Using a variant of a probabilistic task that
allows for within subjects measures of learning in an event related
design, we observed that as learning progressed, accuracy was
modulated by difficulty (easy and hard) across type of learning (via
feedback or observation). Tracking these behavioral results, ROIs in
the BG and MTL, specifically the caudate nucleus and hippocampus,
were found to be modulated by cue difficulty, displaying similar
patterns of activity to both feedback and observation information
during learning. Additionally, BOLD signals in the BG and MTL regions
were found to be positively correlated during learning, as assessed by
simple comparisons between parameter estimates and a more
sophisticated functional connectivity analysis using both the hippo-
campus and the caudate nucleus as seed regions. This functional



Fig. 4. Granger causality analysis using the hippocampus ROI obtained from the main effect of cue difficulty analysis as a reference region. (A) Two regions of the right caudate
nucleus (x, y, z=14, 18, 13) and (x, y, z=14, 12, 19; not shown) correlated with the hippocampus during the feedback trials, while (B) nearly the same ROIs (x, y, z=14, 18, 13) and
(x, y, z=14, 10, 18; not shown) and a region of the right ventral putamen (x, y, z=22, 3, −4; not shown) correlated with the hippocampus during the observation trials.
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interactionmay potentially be explained by dopaminergicmodulation
during reward related learning (Lisman and Grace, 2005; Shohamy
et al., 2008) as both BG and MTL ROIs were found to correlate with a
prediction error signal, further corroborating the hypothesis that these
distinctmemory systems interact in a parallel manner while processing
probabilistic information to facilitate goal directed behavior.

These results complement the visuomotor learning and simple
association learning literature, which suggests that the medial tem-
poral lobe and basal ganglia may be online simultaneously and are
involved in learning arbitrary visuomotor associations (Amso et al.,
2005; Haruno and Kawato, 2006; Law et al., 2005; Toni et al., 2001). In
particular, our results are consistent with a recent study by Mattfeld
and Stark (2010) which investigated the interaction of the MTL and
the BG during an arbitrary visuomotor association task. The authors
reported that several regions of the MTL and BG demonstrated an
increase in BOLD signal as the strength of memory increased during a
trial and error task, suggesting that regions of the MTL and BG are
involved in learning arbitrary associations. Our observation of the
hippocampus and caudate nucleus exhibiting larger BOLD responses
to easy compared to hard cues complements Mattfeld and Stark's
result. The authors also employed a functional connectivity analysis
which revealed connectivity between both the ventral (nucleus
accumbens) and dorsal (caudate nucleus) striatum with the hippo-
campus during learning, further supporting the interactive nature of
these systems during learning and memory processes. One important
distinction between our current task design and more traditional
visuomotor tasks is the inclusion and investigation of different types
of learning (observation and feedback).

Our results enhance recent neuroimaging findings demonstrating
noncompetitive interactions between the BG and MTL during
category learning (Cincotta and Seger, 2007; Voermans et al., 2004).
For instance, a recent blocked design fMRI study which used an
Fig. 5. Activation in both (A) left putamen (x, y, z=−30, 2, 4) and (B) right hippocampus (x
during probabilistic feedback learning.
information integration category learning task observed similar
patterns of activation to feedback and observation information in
the hippocampus and regions of the striatum (Cincotta and Seger,
2007). The focus of this paper was on categorizing the BOLD response
of different sub regions of the striatum to feedback and observation
information. Interestingly, bilateral hippocampal activity to both
types of information was also reported, leading to the interpretation
that the striatum and hippocampus interact noncompetitively during
information integration category learning. In the current experiment,
an event related design allowed for the decoupling of factors such as
difficulty and examining changes across learning to further lend
support to the hypothesis that parallel processing in the BG and MTL
contributes to overall learning during probabilistic paradigms
(irrespective of the type of learning). Furthermore, we observed a
significant positive correlation between the BG (caudate nucleus) and
MTL (hippocampus) during the observation learning session and a
trend towards a positive correlation during the feedback learning
session. Whereas negative correlations may imply competition
between memory systems (Poldrack et al., 2001), positive correla-
tions may suggest noncompetitive, perhaps even synergistic interac-
tions, leading to the interpretation that one system may inform the
other in specific contexts to facilitate probabilistic learning. This
functional connectivity is illustrated by Granger causality maps using
both the hippocampus and the caudate nucleus as seed regions, which
highlighted that areas within the striatum and the hippocampus were
correlated at simultaneous time points during the learning phase.

It should be noted that our hippocampus region of activation from
the main effect of cue difficulty analysis is reported at pb0.005,
uncorrected for multiple comparisons. Additionally, two regions from
the test phase analysis, the caudate nucleus and a region adjacent to
the hippocampus, are also reported at pb0.005 uncorrected. Although
this information could be useful for future studies, regions reported at
, y, z=27, −28, −14) were found to positively correlate with a prediction error signal
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an uncorrected level should be regarded with caution when
interpreting the results due to the increased likelihood of producing
a Type I error (Poldrack et al., 2008).

The major differences between the feedback and observation
versions of our task were outlined the Materials and methods section.
Despite their differences, however, the two learning sessions share
the common goal of learning the value of probabilistic cues. Thus,
participants may engage in a variety of cognitive strategies in order to
facilitate successful performance. As learning progresses over time in
the feedback session, for instance, it is possible that participants
employ a more declarative based cued recall strategy during the cue
phase. Participants may also use verbal rehearsal strategies during the
learning phase, irrespective of the task version. Research examining
how participants solve another probabilistic learning task, the
Weather Prediction Task (WPT), may shed some insight into possible
declarative and nondeclarative components of category learning tasks
as well as the knowledge that participants may have during these
types of learning tasks (Gluck et al., 2002; Meeter et al., 2006). A
relatively recent study by Newell et al. (2007) found that participants
had comparable declarative knowledge on a feedback and observation
version of the WPT. The authors argue therefore, that the feedback
version of the WPT may not be an exclusively nondeclarative task.
Meeter et al. (2008) have suggested that participants may solve the
WPT via engagement of rule-learning, incremental learning (both of
which are thought to engage the BG), memorization techniques (MTL
dependent), or some combination of these three strategies. Further-
more, Shohamy et al. (2004) suggest that participants most likely
recruit multiple parallel learning systems to solve probabilistic
categorization tasks. It is quite possible that both observation and
feedback versions of our task contain some declarative and non-
declarative components. Therefore, the use of the terms declarative
and nondeclarative in this text are meant as a reference, and not
meant to suggest the sole manner in which participants may solve the
tasks.

The possibility that our tasks contain elements of declarative and
nondeclarative learning features may contribute to the main result
that the hippocampus and striatum are involved in both feedback and
observation learning—primarily being modified by cue difficulty,
rather than learning type. It is possible that the involvement of
multiple cognitive operations (e.g., cued recall or rehearsal strategies)
is facilitating the mutual engagement of these regions, irrespective of
learning type. One limitation of the current study is that this
possibility cannot be definitively ruled out. Future studies may be
able to better parse out the possible contributions that multiple
cognitive processes have on these tasks and the subsequent neural
signals in the MTL and BG.

The significance of the possibly synergistic interaction between BG
and MTL during learning is still unclear. One hypothesis is that these
regions cooperate in certain contexts to process new information that
is conflicting with previous expectations in order to promote flexible
learning and behavior (Packard and McGaugh, 1996). Although our
current paradigm does not allow for direct examination of this idea,
there is some indirect support from our prediction error analysis. A
prediction error occurs when the actual outcome to an event differs
from the expected outcome. In our paradigm, both the hippocampus
and the striatum were involved in processing this error signal. This
corroborates the hypothesis that these regions may be operating in
parallel and perhaps interacting with each other in a synergistic
manner during situations when learning requires more effort or
contains conflicting information. This idea is indirectly supported by a
relatively recent human fMRI study examining route recognition in
Huntington's disease patients (Voermans et al., 2004). In this study,
increases in hippocampus activity were attributed to compensatory
mechanisms due to degrading striatal function in patients, leading the
authors to postulate a noncompetitive interactive relationship
between the BG and MTL during route recognition.
Consideration for the anatomical connectivity between regions in
the BG and MTL may also be helpful in determining their functional
relationship during learning. One recent hypothesis about interactive
communications across the striatum and the hippocampus specifical-
ly is that it may be facilitated by interconnections with midbrain
dopaminergic neurons (Lisman and Grace, 2005). Dopamine neurons
have been consistently linked with reward processing, particularly
providing a prediction error signal during reward related learning
(Schultz et al., 1997; for review see Schultz, 2002). A component of
reinforcement learning models (Barto, 1995; Rescorla and Wagner,
1972), such prediction error signals typically correlate with activity in
dopaminergic targets in the human brain, primarily in the striatum
(e.g., McClure et al., 2003; O'Doherty et al., 2003). However, dopamine
neurons also project to the hippocampus (e.g., Swanson, 1982) and
promote long term plasticity (Huang and Kandel, 1995), with a
potential role in coding for novelty (Lisman and Grace, 2005), which
has been supported by recent neuroimaging studies (Bunzeck and
Duzel, 2006; Wittmann et al., 2007).

Based on the Lisman and Grace model (2005), it may have been
expected that more ventromedial regions of the striatum would be
engaged during our probability learning paradigm and would
correlate with hippocampus activation. It may be slightly surprising
therefore, that more dorsal regions of the striatum were observed
during learning. However, it has been shown in the literature that the
dorsal striatum is active during instrumental tasks (O'Doherty et al.,
2004) and its BOLD signals are modulated by action contingency
(Tricomi et al., 2004). Moreover, the literature supports a role for the
dorsal striatum, particularly the caudate nucleus, in cognitive tasks
involving feedback (Poldrack et al., 2001; Seger, 2008; Seger and
Cincotta, 2005; Tricomi and Fiez, 2008). Considering this evidence, it
makes sense that the strongest loci of activation in the striatum in our
task is in the dorsal rather than ventral striatum. There is also a direct
projection from the hippocampus to the caudate nucleus in the
rodent, albeit a ventral region of the caudate nucleus (Jung et al.,
2003), and it has been suggested that the ventral striatum may
influence the dorsal striatum via multiple spiral loops which exist
between the striatum and the midbrain dopaminergic centers (Haber,
2003; Heimer et al., 1997). This evidence suggests that it is plausible
that interactions between the hippocampus, midbrain DA areas, and
more dorsal regions of the striatum exist, via a ventromedial to
dorsolateral movement of information through the spiral loops.

To further assess the engagement of these regions during learning,
we employed a reinforcement learning model for the feedback trials,
which included a prediction error regressor. A region within both the
striatum and the hippocampus that correlated with a prediction error
signal was observed. This analysis suggests that, during feedback
learning at least, the BG and MTL are actively involved in situations
where mismatches or violations of expectations occur that may
present useful updating signals. Some limitations of this analysis exist,
however, as it is difficult to assess at which time point in the trial
(given our design) the individual correlations with PE of the two
structures occur. Further, it is possible that our trial structure did not
allow separation of the prediction error signal from an uncertainty
signal (between cue and outcome) that has been found to be linked
with local field potentials in the anterior hippocampus (Vanni-
Mercier et al., 2009). However, PE signals are signed (i.e., an
unexpected negative outcome will lead to a negative PE signal),
while a novelty, saliency, or uncertainty signal may be positive
irrespective of the valence of the outcome. Our finding of BOLD signals
in the hippocampus correlating with PE signals is not commonly
reported in the literature and may point to an area of future research
probing the nature of PE signals in the MTL and potential interactions
with the striatum that underlie parallel processing during probabi-
listic learning.

In addition to the similarities in the BOLD responses found in the
hippocampus and regions of the basal ganglia during our task, two
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differences were also apparent. First, only regions within the basal
ganglia weremodified by amain effect of learning type, while no voxels
were identified in the MTL showing such differentiation. Several
neuroimaging papers have shown that feedback and reward processing
recruit ventromedial regions of the striatum (for review see Delgado,
2007), thus, it is not surprising that this region was recruited more
strongly during the feedback learning trials. It may have been expected
that theMTLwould be selectivelymodulated by the observation version
given previous results (Poldrack et al., 2001); however we did not
observe this.While a null result in neuroimaging is not indicative of any
particular finding per se and the context and details of our paradigm
differ fromprevious probabilistic learning studies, it is possible thatMTL
BOLD signals within our paradigm are recruited during both feedback
and observation learning–as suggested by the main effect of difficulty
analysis–to contribute to overall learning. A second difference which
emerged between the hippocampus and caudate nucleus was that the
hippocampus showed amain effect of time (early×late learning)during
the learning session, whereas caudate nucleus responses were not
significant. This effect was driven primarily by activity during feedback
learning (primarily for the hard cues), which was greater during late
compared to early stages of learning in the hippocampus. This result
may suggest that the involvement of the hippocampus in feedback
learning happens later on during the learning process.

One finding to note is that the active voxels comprising regions of
interest within the BG varied according to the type of analysis. It is
perhaps not surprising, given the multifunctionality and connectivity of
the striatum (Middleton and Strick, 2000a,b; Pennartz et al., 2009) that
different voxels would be sensitive to the type of learning or level of
difficulty. In the current experiment, dorsomedial regions of the striatum
(caudate nucleus) were involved in initial learning and testing, whereas
the dorsolateral regions (putamen) were involved in subsequent
analyses with activity during learning positively correlating with
prediction error signals. A functional connectivity analysis also revealed
correlationsbetweenboth caudatenucleus andputamen regions and the
hippocampus. Interestingly, a ventromedial striatum region was found
to be more responsive to feedback compared to observation learning,
suggesting that some striatal subcomponents may distinguish between
learning type (Poldrack et al., 2001) as supported by neuropsychological
studies (Shohamy et al., 2004). In our design, however, this analysis is
affected by the presence of affective feedback known to engage regions
of the ventromedial striatum (for review see Delgado, 2007). Yet, this
result is in accordancewithpreviousprobabilistic learning studieswhich
report engagement of posterior parts of the caudate nucleus and
putamenduring learning, andmore anterior parts of the caudate nucleus
and ventral striatum linked with feedback processing (Cincotta and
Seger, 2007; Seger and Cincotta, 2006).

In contrast to the striatum results, activity in the hippocampus was
fairly consistent across analyses. There has also been recent research
parsing out the distinct functional role of the subregions of the
hippocampus. However, these studies have focused more on other
issues such as anatomical distinctions between regions involved in
memory encoding versus retrieval as well as pattern completion
versus pattern separation (Bakker et al., 2008; Eldridge et al., 2005;
Greicius et al., 2003). Future studies using high resolution fMRI may
investigate how distinct subregions of MTL and BG interact during
learning, to contribute to decision making processes underlying goal
directed behaviors. To conclude, an investigation of the interactions
between the MTL and BG during probabilistic learning suggests that
these distinct memory regions may interact in a parallel manner to
facilitate goal directed learning, acting synergistically during predic-
tion error like learning scenarios.
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