
Meta-Analysis of Psychophysiological
Interactions: Revisiting Cluster-Level

Thresholding and Sample Sizes

David V. Smith1* and Mauricio R. Delgado2*

1Department of Psychology, Temple University, Philadelphia, Pennsylvania, 19122
2Department of Psychology, Rutgers University, Newark, New Jersey, 17102

r r

Abstract: Within the neuroimaging community, coordinate based meta-analyses (CBMAs) are essential
for aggregating findings across studies and testing whether those studies report similar anatomical
locations. This approach has been predominantly applied to studies that focus on whether activation
of a brain region is associated with a given psychological process. In a recent paper, we used CBMA
to examine a distinct set of studies—that is, those focusing on whether connectivity between brain
regions is modulated by a given psychological process (Smith et al. [2016]: Hum Brain Mapp
37:2904–2917). Specifically, we reviewed 284 studies examining brain connectivity with psychophysio-
logical interactions (PPI). Our meta-analytic results indicated that PPI yields connectivity patterns that
are consistent across studies and that can be specific for a given psychological process and seed region.
After publication of our findings, we learned that the analysis software we used to conduct our
CBMAs (GingerALE v2.3.3) contained an implementation error that led to results that were more liber-
al than intended. Here, we comment on the impact of this implementation error on the results of our
paper, new recommendations for sample sizes in CBMAs, and the importance of communication
between software users and developers. We show that our key claims are supported in a reanalysis
and that our results are robust to new guidelines on sample sizes. Hum Brain Mapp 38:588–591,
2017. VC 2016 Wiley Periodicals, Inc.

Key words: psychophysiological interaction; PPI; CBMA; meta-analysis; fMRI; open science

r r

INTRODUCTION

Neuroimaging results are conventionally reported in
terms of coordinates within a 3-dimensional stereotactic

system. This reporting system motivated the development
of coordinate-based meta-analyses (CBMAs), which allow
for the quantification of consistency and specificity across
studies [Yarkoni et al., 2010]. Although the CBMA
approach has largely been applied to studies examining
how activation of a region (a coordinate) is associated
with a given psychological process, it has also been used
to evaluate whether regions are consistently co-activated
[Pauli et al., 2016; Robinson et al., 2012]. This approach—
called meta-analytic connectivity modeling [Robinson
et al., 2010]—is analogous to functional connectivity and
therefore suffers from similar limitations [Gerstein and
Perkel, 1969]. Specifically, changes in functional connectivi-
ty between two regions can arise due to changes in signal
or noise in either region, or via a change in connectivity
with another region [Friston, 2011].

Contract grant sponsor: National Institutes Health grants; Contract
grant numbers: R01-DA027764 (to MRD) and F32-MH107175 (to DVS).

*Correspondence to: D. V. Smith; Department of Psychology,
Temple University, Philadelphia, Pennsylvania, 19122. E-mail:
david.v.smith@temple.edu OR M. R. Delgado; Department of
Psychology, Rutgers University, Newark, New Jersey, 17102.
E-mail: delgado@psychology.rutgers.edu

Received for publication 2 August 2016; Accepted 9 August 2016.

DOI: 10.1002/hbm.23354
Published online 20 August 2016 in Wiley Online Library
(wileyonlinelibrary.com).

r Human Brain Mapping 38:588–591 (2017) r

VC 2016 Wiley Periodicals, Inc.



In recent study, we addressed this problem by conduct-
ing CMBAs on studies examining psychophysiological
interactions (PPI), a popular brain connectivity analysis
approach that can be interpreted as a simple (linear) mod-
el of effective connectivity [Smith et al., 2016]. PPI evalu-
ates whether an interaction between a seed region and
psychological context is expressed in a target region [Fris-
ton et al., 1997]. For example, researchers who select an
amygdala seed region and an emotional task may find a
target region in medial prefrontal cortex (MPFC), indicat-
ing that, during emotional processing, the amygdala con-
tributes to the response in the MPFC. We examined the
reported target regions from 284 PPI studies using differ-
ent seed regions and psychological contexts—a strategy
that allowed us to quantify the consistency and specificity
of PPI results. We conducted our analyses using Ginger-
ALE (v2.3.3), a powerful and easy-to-use program for
CBMAs. Our analyses supported two broad conclusions.
First, PPI studies produce reliable results, consistently
identifying similar targeting regions across studies. For
instance, PPI studies using the amygdala as a seed region
and emotion as the psychological context reliably reported
target regions within the MPFC. Notably, this particular
result has already been replicated and extended by an
independent group [Di et al., 2016]. Second, PPI studies
can produce results that are highly specific to a given seed
region and psychological context. For example, PPI studies
using the dorsolateral prefrontal cortex (DLPFC) as a seed
region identified targets in the posterior cingulate cortex
when the psychological context involved cognitive control
and targets in the amygdala when the psychological con-
text did not involve cognitive control. These results high-
light both the consistency and specificity of PPI studies
[Smith et al., 2016].

Shortly after our paper appeared online, we learned that
the version of GingerALE we used contained an imple-
mentation error in the cluster-level correction code, which
resulted in thresholds that did not control the family wise
error (FWE) rate. This implementation error is detailed in
a recent Technical Report authored by the developers of
GingerALE [Eickhoff et al., 2016a]. The developers recom-
mend that users repeat their analyses with the newest ver-
sion of GingerALE (v2.3.6) and compare the results to
those in their original reports. Depending on the impact of
the implementation error, the developers also discuss dif-
ferent approaches for corrective communications. For
example, minimal corrections may only require a comment
on Pubmed confirming the original results while more
substantive corrections may need to be outlined and dis-
cussed in a Comment-type article [Eickhoff et al., 2016a].

Based on the developers’ recommendations, the purpose
of this article is to discuss the impact of the GingerALE’s
implementation error on our results. Our reanalysis uti-
lized a conventional cluster-level threshold of P 5 0.05
with cluster-forming threshold of P 5 0.001 [Eickhoff et al.,
2016b]. Importantly, the reanalysis confirmed all of our

key claims. We note, however, that the reanalysis also
indicated that three targets reported in our original results
did not survive our specified FWE rate (see targets below).
Ignoring these three targets in our paper does not alter
any of our conclusions. Of these regions, only the inferior
lateral occipital cortex (iLOC) target was mentioned in our
Discussion section.

1. dorsolateral prefrontal cortex (DLPFC) target in Fig-
ure 3B (i.e., DLPFC seed with cognitive control
studies);

2. inferior lateral occipital cortex (iLOC) target in Figure
3C (i.e., amygdala seed with emotion studies);

3. ventrolateral prefrontal cortex (VLPFC) target in Sup-
porting Information Figure 2 (i.e., ventral striatum
seed contrasted against other seeds).

In addition to these specific changes, we also note two
additional features of our reanalysis. First, one of our larg-
er clusters (superior temporal sulcus in Figure 3D) was
only evident with a cluster-forming threshold of P 5 0.005.
Although higher cluster-forming threshold (e.g., P 5 0.001)
are important for parametric analyses using random field
theory, recent large-scale simulations have suggested that
nonparametric analyses (i.e., permutation-based testing)
can maintain specified FWE rates in conventional fMRI
analyses, even with relatively low cluster-forming thresh-
olds (e.g., P 5 0.01) [Eklund et al., 2016]. While GingerALE
employs permutation-based testing in its cluster-extent
thresholding, it remains unclear whether FWE rates
become inflated at lower cluster-forming thresholds, so
users are advised to use P 5 0.001 [Eickhoff et al., 2016a].
Second, our reanalysis utilized a cluster-level threshold
that was more liberal than our original paper
(P 5 0.00625). This original threshold was intended to add
an extra layer of protection against multiple comparisons
(i.e., four bidirectional contrasts); however, it is quite rare
to see corrected thresholds that are more stringent than
P 5 0.05, likely because such thresholds elevate the risk of
Type 2 errors [Lieberman and Cunningham, 2009]. Indeed,
all of the changes that stem from our reanalysis reflect a
tradeoff between Type 1 and Type 2 errors, and our goal
here is to provide accurate information about the nature of
that tradeoff within our study. Interested readers are wel-
come to review our new statistical maps on the Neuro-
Vault repository: http://neurovault.org/collections/1406
[Gorgolewski et al., 2015].

We have also revisited another aspect of our paper
because of a recent development in sample size recom-
mendations for CBMAs. Sample sizes (i.e., number of
experiments) are an important issue within CBMAs using
activation likelihood estimation (ALE). Indeed, when an
ALE score is based on a small number of experiments,
there is considerable risk that the observed results can be
driven by a single experiment—an effect that would obvi-
ously undermine the value of the meta-analysis. Our paper
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relied on previous anecdotal recommendations for sample
size, which stated that “at least 10–15 experiments” are
needed to reduce the likelihood that meta-analytic results
are driven by a single experiment [Eickhoff and Bzdok,
2013]. In a recent study, this issue was examined quantita-
tively using massive sets of simulations [Eickhoff et al.,
2016b]. This study came to the conclusion that a sample
size of at least 17–20 experiments is necessary to prevent
(a) one experiment from accounting for more than 50% of
the ALE score and (b) two experiments from accounting
for more than 80% of the ALE score. Based on these recent
results, we revisited sample size in two of our analyses
that utilized fewer than 17 experiments. In Figure 3A, we
reported two clusters that were based on 10 experiments.
Within the fusiform face area (FFA) cluster, we found that
four experiments contributed to the result, each accounting
for 16.84%–33.15% of the ALE score (the top two experi-
ments accounted for 63.71%). And within the primary
somatosensory (S1) cluster, we found that five experiments
contributed to the result, each accounting for
6.64%–37.15% of the ALE score (the top two experiments
accounted for 67.18%). We repeated this analysis for Fig-
ure 3B, which reported a cluster in posterior cingulate cor-
tex (PCC) using 15 experiments. We found that five
experiments contributed to the result, each accounting for
0.27%–42.29% of the ALE score (the top two experiments
accounted for 66.26%). Taken together, these observations
suggest that our original findings were not biased by small
sample sizes.

Analytical tools within the neuroimaging community
and recommendations for best practices are continually
being improved. How can these advances be communicat-
ed to users? Although the there is a wide range of plat-
forms for scholarly communication, we highlight three
strategies that may help with software-specific develop-
ments. First, in cases where an analysis program is affect-
ed by an implementation error, the developers can
describe the error and discuss the need for reanalysis. This
strategy is exemplified and discussed in the Technical
Note from the GingerALE developers [Eickhoff et al.,
2016a]. Second, it would be helpful for developers to
announce software updates via email. For example, the
FMRIB Software Library (FSL) analysis package for fMRI
data encourages all users to provide an email address
when downloading FSL [Jenkinson et al., 2012]. Whenever
there is an update to the software, all users are notified
immediately. Third, we encourage users to be actively
engaged in support forums because of the tremendous
benefits associated with open communication and dialogue
between users and developers. We realize that some of
these forums have high traffic (e.g., dozens of emails each
day) and thus may be daunting to read carefully or regu-
larly; however, they provide an excellent resource for
learning about new techniques and solutions to common
problems. In addition, active engagement with a support
forum can sometimes provide an early warning signal that

there may be a peculiar behavior in a program. Indeed,
the possibility of a problem with the cluster-level thresh-
olding option in GingerALE was first raised on the sup-
port forums. Had we been engaged with that support
forum, we likely would have noticed the discussion and
delayed the submission of our article accordingly. We
hope these points illustrate the importance of communica-
tion between users and developers, while also highlighting
the advantages of using software and tools that promote
dialogue.

In summary, we have demonstrated that the implemen-
tation error in GingerALE did not affect the original con-
clusions of our PPI meta-analysis. We have also shown
that our results are robust to revised recommendations for
minimum sample sizes in CBMAs. Although CBMAs are
currently the primary tool for assessing the consistency
and specificity of neuroimaging results, image-based meta-
analyses [Salimi-Khorshidi et al., 2009] may eventually rise
in popularity as more authors share unthresholded statisti-
cal maps and adopt more open science practices [Gorgo-
lewski and Poldrack, 2016; McKiernan et al., 2016]. Within
the context of PPI studies, image-based meta-analyses
would have the power to detect subthreshold connectivity
patterns across studies, thus improving our understanding
of how brain connectivity shapes behavior.
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