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Abstract
Although the use of nondrug rewards (e.g., money) to facilitate smoking cessation is widespread, recent research has found 
that such rewards may be least effective when people who smoke cigarettes are tempted to do so. Specifically, among peo-
ple who smoke, the neural response to nondrug rewards appears blunted when access to cigarettes is anticipated, and this 
blunting is linked to a decrease in willingness to refrain from smoking to earn a monetary incentive. Accordingly, methods 
to enhance the value of nondrug rewards may be theoretically and clinically important. The current proof-of-concept study 
tested if real-time fMRI neurofeedback training augments the ability to upregulate responses in reward-related brain areas 
relative to a no-feedback control condition in people who smoke. Adults (n = 44, age range = 20-44) who reported smoking 
>5 cigarettes per day completed the study. Those in the intervention group (n = 22, 5 females) were trained to upregulate 
brain responses using feedback of ongoing striatal activity (i.e., a dynamic “thermometer” that reflected ongoing changes 
of fMRI signal intensity in the striatum) in a single neurofeedback session with three training runs. The control group (n = 
22, 5 females) underwent a nearly identical procedure but received no neurofeedback. Those who received neurofeedback 
training demonstrated significantly greater increases in striatal BOLD activation while attempting to think about something 
rewarding compared to controls, but this effect was present only during the first training run. Future neurofeedback research 
with those who smoke should explore how to make neurofeedback training more effective for the self-regulation of reward-
related brain activities.
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Introduction

Smoking is the chief preventable cause of cardiovascular 
disease, lung and throat cancers, as well as many chronic 
respiratory illnesses, both in the United States and globally 
(Islami et al., 2015; Morris et al., 2015). Although rates are 
in decline, cigarette smoking is still prevalent; 14% of U.S. 
adults report that they currently smoked cigarettes in 2018 
(Creamer et al., 2019). In addition, although 55% of peo-
ple who smoked attempted to quit in the same year, fewer 
than one in 13 were successful. Accordingly, developing 
effective strategies for helping individuals to quit smoking 
and achieve long-term abstinence remains a top priority for 
public health.

One approach to facilitating smoking cessation that is 
rooted in well-established behavioral principles is contin-
gency management, which involves using nondrug rewards 

 * Stephen J. Wilson 
 sjw42@psu.edu

1 Department of Psychology, The Pennsylvania State 
University, University Park, PA, USA

2 Novartis, Dublin, Ireland
3 Department of Human Development and Family Studies, The 

Pennsylvania State University, University Park, PA, USA
4 Department of Psychology, Swansea University, Swansea, 

Wales
5 Department of Biobehavioral Health, The Pennsylvania State 

University, University Park, PA, USA
6 Department of Psychology, Rutgers University, Newark, NJ, 

USA
7 Department of Psychiatry, Yale University School 

of Medicine, New Haven, CT, USA

http://crossmark.crossref.org/dialog/?doi=10.3758/s13415-023-01070-y&domain=pdf
http://orcid.org/0000-0001-5615-5587


 Cognitive, Affective, & Behavioral Neuroscience

1 3

(e.g., money) to reinforce abstinence from cigarettes (Stitzer 
& Petry, 2006). A recent, randomized, controlled trial exam-
ined four financial-incentive smoking cessation programs in 
more than 2,500 participants and found that the most effec-
tive incentive condition nearly tripled the quit rate relative 
to standard care (Halpern et al., 2015). Although these are 
highly encouraging findings, they are tempered by the obser-
vation that most of the participants who were provided with 
financial incentives did not abstain from cigarettes (73.9-
85.5% across four programs) despite being offered a sizeable 
amount of money (up to $800 over a 6-month period) to 
do so. Several other incentive-based cessation studies have 
yielded a similar pattern of results (Baker et al., 2018; Etter 
& Schmid, 2016; Halpern et al., 2018; Volpp et al., 2009). 
Such findings highlight the promising but limited nature of 
using nondrug rewards to incentivize smoking cessation. 
Although this approach does significantly boost the odds of 
quitting and maintaining abstinence from cigarettes, even 
relatively large nondrug rewards are not sufficiently moti-
vating to foster lasting behavior change for the majority of 
individuals who smoke cigarettes.

A key barrier to the effectiveness of reinforcement-
based interventions for facilitating smoking cessation may 
be the deficits in reward functioning that are associated 
with cigarette smoking. A growing body of neuroimaging 
research have found that people who smoke have a damp-
ened response to nondrug rewards in the striatum (primarily 
dorsal and ventral portions of the caudate nucleus and puta-
men), relative to people who do not smoke (Bühler et al., 
2010; Jastreboff et al., 2015; Lessov-Schlaggar et al., 2013; 
Luo et al., 2011; Peters et al., 2011; Rose et al., 2012). Such 
differences may reflect preexisting deficiencies in dopamin-
ergic motivational circuitry that increases the risk for ciga-
rette use (Blum et al., 2000; Noble, 2000), neuroadaptations 
in brain reward systems that result from prolonged nicotine 
administration (Kalivas & Volkow, 2005; Koob et al., 2004; 
Perez et al., 2012), or some combination of the two. Regard-
less of their source, smoking-related differences linked to the 
striatum are likely to have significant implications for the 
use of contingency management and related strategies to aid 
smoking cessation, as the magnitude of the striatal response 
to reward varies systematically with how those rewards are 
appraised. Specifically, larger and/or more preferred rewards 
evoking stronger responses in the striatum than those that 
are smaller and/or less preferred (Delgado, 2007; Peters & 
Büchel, 2010).

Contextual factors, such as nicotine deprivation and ciga-
rette availability, appear to play a part in further dampening 
striatal sensitivity to nondrug rewards in people who smoke 
(Pergadia et al., 2014; Wilson et al., 2008). For instance, 
abstaining from smoking for 24 hours, compared with smok-
ing ad libitum, was associated with an attenuation of the 
response to monetary rewards in the striatum (i.e., caudate 

nucleus; Sweitzer et al., 2014), and between-person differ-
ences in the magnitude of this reduction predicted smoking 
cessation outcomes. Specifically, greater abstinence-induced 
decreases in the striatal response to rewards were associ-
ated with a significantly greater odds of lapsing during a 
subsequent 3-week quit attempt supported by contingency-
management (Sweitzer et al., 2016). Acute nicotine absti-
nence also has been associated with reduced pleasure expec-
tancies and responsiveness to financial incentive in people 
who smoke, independent of withdrawal symptoms (Powell 
et al., 2002). Regarding the effects of cigarette availability, 
individuals who were informed that they would have the 
opportunity to smoke soon demonstrated attenuated activa-
tion of the striatum (i.e., caudate nucleus) in response to 
winning money compared with those who were told that 
they would not be able to smoke until after a significant 
delay (Wilson et al., 2008). Moreover, the magnitude of stri-
atal response to monetary rewards in those who were told 
that cigarettes would soon be available positively correlated 
with their willingness to further delay smoking to earn extra 
money (Wilson et al., 2014). These findings suggest that 
nondrug rewards may be even less effective at promoting 
abstinence when they are most required (i.e., during acute 
nicotine withdrawal and in moments when those who are 
quitting are tempted by the actual or anticipated availability 
of cigarettes).

Addressing decrements in the sensitivity to nondrug 
rewards that are related to smoking could help to improve 
cessation outcomes in people who are trying to quit. In par-
ticular, targeting striatal activity may be an innovative way 
to enhance the effectiveness of reward-based approaches to 
the treatment of smoking (and possibly drug addiction, more 
generally). Recent advances in neuroimaging capabilities 
have created novel methods for exploring this possibility. 
Specifically, real-time functional magnetic resonance imag-
ing (fMRI) neurofeedback techniques, which allow the train-
ing of individuals to develop some degree of volitional con-
trol over activity in specific brain regions, may serve as an 
important new tool with which to help counteract nondrug 
reward-devaluation in people who smoke.

Although not focused on reward-related brain region, a 
small number of studies have investigated the efficacy of 
neurofeedback as a training tool for individuals who smoke 
cigarettes. The goal of most of this line of work has been 
to increase participants’ ability to reduce cigarette crav-
ing using neurofeedback from the anterior cingulate cor-
tex (ACC). These studies have shown that individuals who 
smoke are capable of significantly reducing BOLD signal 
in the ACC when presented with real-time fMRI neurofeed-
back and instructed to “reduce craving” compared with base-
line and no-feedback control and that this reduction in ACC 
activation is associated with reduced self-reported craving 
(Hanlon et al., 2013; Hartwell et al., 2016; Li et al., 2013).
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Given the lack of evidence-based interventions that 
directly target the dampening of sensitivity towards nondrug 
rewards in those who smoke, neurofeedback can be used 
to train people to upregulate activity in the striatum. Such 
training may provide a way to give them greater control over 
their motivational responses to nondrug rewards through the 
self-regulation of associated striatal responses (Dickerson, 
2018). Specifically, individuals who smoke may be able to 
selectively apply the skills acquired through neurofeedback 
training to increase their sensitivity to nondrug rewards out-
side of the laboratory.

In support of this possibility, fMRI neurofeedback pro-
cedures for training individuals to increase activity in brain 
areas supporting reward-related processing and motivation 
have been used effectively in both community (Greer et al., 
2014; Li et al., 2018;MacInnes et al., 2016 ; Sulzer et al., 
2013) and clinical samples (e.g., cocaine dependence in 
Kirschner et al., 2018; alcohol dependence in Kirsch et al., 
2016; major depressive disorder in Young et al., 2017). For 
instance, studies suggest that healthy individuals can learn 
to volitionally upregulate activity in the substantia nigra 
(Sulzer et  al., 2013), ventral tegmental area (MacInnes 
et al., 2016; Sulzer et al., 2013), and nucleus accumbens 
(Greer et al., 2014; Li et al., 2018) when provided with real-
time fMRI neurofeedback compared with those provided 
with control interventions. Collectively, this work high-
lights the potential of neurofeedback as a tool for teaching 
individuals strategies for enhancing reward-related brain 
responses, which they conceivably might then be able apply 
in a directed fashion in the context of specific stimuli (e.g., 
financial incentive).

The goal of the current proof-of-concept study was to 
determine whether people who smoke can learn to volition-
ally increase striatal activity when provided with neurofeed-
back targeting this region, relative to when no such feedback 
is provided, and whether this ability persists immediately 
after training in the absence of active feedback. Toward this 
end, people who smoke were randomly assigned to one of 
two groups. Those in the intervention group received real-
time fMRI neurofeedback designed to train them to increase 
activity in the striatum using cognitive strategies (i.e., men-
tal imagery) in the absence of explicit external rewards. 
Those in the control group also were asked to use cognitive 
strategies to increase their sense of reward and degree of 
motivation, but they did not receive any feedback about brain 
activity. Given the preliminary nature of this line of research, 
we elected to use a no-feedback control group to determine 
whether neurofeedback training improved the ability to self-
regulate brain activity in reward-related areas compared with 
simple mental imagery instructions alone. We hypothesized 
that (a) compared with those in the control group, individu-
als in the intervention group would learn to significantly 
increase the blood oxygen level-dependent (BOLD) response 

in the striatum, (b) that this effect would increase across 
training runs, and (c) that the effect would be maintained 
following removal of active feedback. Finally, it is important 
to explore any widespread impact of neurofeedback training 
on the whole brain. We also examined potential changes out-
side of the striatum associated with neurofeedback training 
by conducting exploratory whole-brain analyses. We were 
particularly interested in investigating the possibility that 
learning to regulate striatial activation via neurofeedback 
training would produce wider changes in the activation of 
regions/networks supporting emotion regulation or positive 
emotion reappraisal, as this could have important therapeutic 
implications.

Materials and methods

Participants

Adults between the ages of 18 and 45 years who smoke 
cigarettes were recruited through flyers, newspaper, radio, 
and internet advertisements. Interested individuals com-
pleted a brief telephone interview to determine eligibility. 
In order to be eligible, individuals had to report that they 
smoked at least 6 cigarettes per day for the past 12 months 
and that they were not currently planning to quit smok-
ing or actively pursuing any form of smoking cessation 
treatment. Individuals were excluded if they reported any 
of the following: current heavy use of alcohol, defined as 
four or more drinks per day for 10 days or more in the past 
30 days; current heavy use of illicit substances, defined as 
illicit drug use for 10 days or more in the past 30 days; use 
of prescription medications that have been found to affect 
blood flow responses in the brain; major cardiovascular 
or respiratory disease during the past year; pregnancy; or 
any known risk from exposure to high-strength magnetic 
fields. Fifty-six individuals were enrolled in the study, with 
48 completing all study procedures.1 Of those complet-
ing the study, 44 yielded usable data (four were excluded 
because of data loss resulting from technical/equipment 
error). Following enrollment, participants were randomized 
into the neurofeedback or control group and scheduled for 
a baseline session. Figure 1 shows the consort figure of the 
study. All procedures were approved by the Pennsylvania 
State University Institutional Review Board. Individuals 
were paid US$215 in total for their participation.

1 Six participants failed to schedule or show for the experimen-
tal session. One participant asked to be removed from the scanner 
due to claustrophobia. One participant indicated that they may have 
had metal in their eye during a final safety screening conducted just 
before being placed in the scanner (they denied having metal in their 
body during a prior screening).
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Study design

Participants visited the lab for an initial baseline session. 
They then underwent a single fMRI neurofeedback train-
ing session on a separate day. The neurofeedback training 
session included a functional localizer paradigm, one pre-
training run, three neurofeedback training runs, and one 
post-training run. Neurofeedback was not provided during 
the pre- and post-training runs. The two groups differed in 
that during the three training runs, the intervention group 
received feedback from a region of interest located in their 
striatum, whereas the control group followed the same 
instructions without receiving any neurofeedback. Partici-
pants were informed of the two study conditions in the con-
sent form, which they reviewed at the start of the baseline 
screening session. The Consensus on the Reporting and 
Experimental Design of clinical and cognitive-behavioural 
Neurofeedback studies (CRED-nf) best practices checklist 
(Ros et al., 2020) is included in Supplementary Table 5.

Baseline session

During the initial baseline visit to the laboratory, partici-
pants provided an exhaled carbon monoxide (CO) sample, 
which was used to verify smoking status (≥9 parts per mil-
lion; BreathCo, Vitalograph, Lenexa, Kansas). Participants 
were then administered a battery of computerized question-
naires and tasks, which are not a focus of the present study 
(see Supplementary Table 1 for full list). At the end of the 

baseline session, participants were scheduled for the neuro-
feedback training session.

Neurofeedback training session

Pre‑scan assessments and instructions

Participants were instructed to smoke at their usual rate 
before the neurofeedback training session. At the beginning 
of the session, participants were asked the time at which 
they last smoked and how much they smoked on that occa-
sion. Next, female participants self-administered a urine 
pregnancy test to ensure that they were not pregnant and 
showed the results to an experimenter. (No participants were 
screened out on the basis of this test.) All participants were 
then asked to smoke one of their own cigarettes to standard-
ize time since last exposure to nicotine.

After smoking a cigarette, participants completed ques-
tionnaires measuring the following (in random order): 
symptoms of nicotine withdrawal (Minnesota Nicotine 
Withdrawal Scale [MNWS]; Hughes & Hatsukami, 1986); 
current levels of positive and negative affect (state version 
of the Positive and Negative Affect Schedule [PANAS]; 
Watson et  al., 1988); smoking urge (Questionnaire of 
Smoking Urges-Brief [QSU-Brief]; Cox et al., 2001); and 
mental energy/fatigue (State Self-Control Capacity Scale 
[SSCCS]; Ciarocco et al., 2007). Next, using computer-
ized visual analog scales (VAS; scored 0-100), participants 
were asked to rate the valence of their affective state (rang-
ing from “unpleasant” to “pleasant”), their level of arousal 

Fig. 1  Consort figure
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(ranging from “sleepy” to “aroused/activated”), and their 
urge to smoke (ranging from “no urge at all” to “strong-
est urge ever”) (pre-scan VAS); VAS items were presented 
individually and in random order.

Participants were then shown a prerecorded presentation 
that included instructions regarding the strategies that they 
should use when attempting to increase activity in reward-
related brain areas to fill up the thermometer during the scan 
session. These directions were modeled after those used by 
prior neurofeedback studies targeting striatal brain regions 
(Greer et al., 2014; Sulzer et al., 2013); e.g., “think about 
things that are most rewarding to you. For example, think 
about the money you just earned (from the Card-Guess-
ing Task), your compliance bonus, and how you’re going 
to spend that money, for example, on a nice meal or on a 
shopping trip.” They were asked not to think about using 
the money to purchase cigarettes. Following the delivery 
of instructions, participants were placed into the scanner to 
complete the tasks described below.

Localizer task

Participants first completed an incentivized Card-Guessing 
Task adapted from Delgado et al. (2000). This task was 
chosen for two reasons. First, previous research has dem-
onstrated that the task consistently and robustly activates 
reward-related brain regions, including the striatum (Del-
gado, 2007). Second, studies have shown that responses 
in the striatum (particularly the caudate nucleus) elicited 
by the task are linked to clinically meaningful outcomes in 
individuals who smoke (Sweitzer et al., 2014, 2016; Wilson 
et al., 2008, 2014), suggesting that such responses provide a 
useful target for intervention.

E-Prime software (Psychological Software Tools, Pitts-
burgh, PA) was used to control computerized stimulus 
presentation and the collection of responses and response 
latencies. During each trial of the task, participants guessed 
whether the value of a playing card presented on the screen 
would be higher or lower than 5. Participants were informed 
that they would receive $1 for correct guesses and lose $0.50 
for incorrect guesses and that they were playing for real 
money to be received at the end of the session. Trials began 
with a choice-making period (2,000 ms), during which par-
ticipants guessed via button press whether the value of a card 
would be higher or lower than 5. Next, a number from 1 to 9 
(excluding 5) was presented (500 ms), followed by feedback 
informing participants whether or not their guess was cor-
rect (500 ms). Feedback for correct and incorrect guesses 
consisted of a green upward-pointing arrow (indicating a 
monetary gain) and a red downward-pointing arrow (indi-
cating monetary loss), respectively. Unbeknownst to partici-
pants, card values were selected after their response on each 
trial. Trials were presented in a blocked format, with each 

block consisting of eight pseudo-randomly presented trials. 
Blocks were separated by 20-second rest periods. Partici-
pants performed two types of blocks: 1) high-gain blocks, 
which contained mostly gain trials (75% correct); and 2) 
high-loss blocks, which contained mostly loss trials (25% 
correct). The inclusion of a small number of incongruent 
trials in each block was designed to maintain participants’ 
engagement and motivation to perform well. Participants 
were not aware of the specific outcome probabilities associ-
ated with each block. Participants were told that they would 
earn $0-40 of extra compensation (i.e., in addition to their 
base pay) based on their performance on the task. In actu-
ality, outcomes were pseudorandomized (described as and 
appearing random, but actually predetermined), such that all 
participants earned $40. The localizer task took a total of 10 
minutes to complete and was used to localize reward-related 
regions of interest (ROIs) for each participant, as detailed 
in Section, Localization of target ROIs. Following the task, 
participants provided VAS ratings of their craving, affect, 
and arousal (post-localizer task VAS).

Pre‑training run

Next, participants performed a 6-minute “pre-training” 
run to assess baseline ability to upregulate reward-related 
brain activity in the absence of feedback. Throughout the 
run, subjects were presented with a static “thermometer” 
image comprised of blue and red bars via PsychoPy stimu-
lus presentation software (version 1.76; Peirce, 2009). The 
thermometer was presented on a background that alternated 
between yellow and green every 20 seconds. During the yel-
low background, subjects were required to relax and rest 
with their eyes open. During the green backgrounds of the 
pre-training run, participants in both groups were asked to 
try to upregulate activity in brain reward areas as previously 
instructed (e.g., by thinking of something rewarding) with-
out receiving neurofeedback (Fig. 2A). Participants were 
instructed that the thermometer would not change during 
pre- and post-training runs.

Training runs

After the pre-training run, participants completed three 
training runs, lasting 6 minutes each. During these runs, 
the intervention group was presented with a thermometer 
that changed dynamically to reflect the strength of fMRI 
signal from the target ROI identified in the localizer run, 
such that the thermometer “filled up” with red bars as brain 
activity in the target area increased and “emptied” to blue 
bars as activity in the target area decreased. The thermom-
eter was presented on a background that alternated between 
yellow and green every 20 seconds. Participants in the 
intervention group were instructed to relax and rest with 
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their eyes open when the yellow background was presented; 
they were required to attempt to increase the activation of 
the target ROI by increasing the height of the thermometer 
using mental imagery (as described above) when the green 
background was presented (Fig. 2A). The signal presented 
via the thermometer was expressed as percent signal change 
from the estimated baseline in the target ROI. Specifically, 

percent signal change was calculated by averaging fMRI sig-
nal in the target ROI over the three most recently acquired 
volumes, subtracting the average fMRI signal in the target 
ROI during the last two volumes of the preceding “rest” 
block, dividing this difference by the latter, and then multi-
plying the resulting value by 100. There were 10 gradations 
on the thermometer (each gradation represented a change 

Fig. 2  (A) Depiction of the “thermometer” observed by participants 
in the active neurofeedback group during the training runs. When the 
background of the thermometer turned green, this signaled to par-
ticipants that they should engage in cognitive strategies to increase 
BOLD response in reward-related brain regions, in turn increasing the 

level of the “thermometer.” (B) Depiction of the static “thermometer” 
observed by participants in the no feedback control group during the 
training runs. When the background turned green, this signaled to 
participants that they should engage in cognitive strategies to increase 
their sense of reward and motivation
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of 0.05%), and it was updated with the acquisition of each 
functional image (i.e., every 2 seconds). Participants in the 
intervention group were instructed to monitor the feedback 
signal and “tune” their strategy during successive blocks to 
determine the most successful approach for them, in accord-
ance with procedures used in prior research (Johnston et al., 
2010, 2011; Subramanian et al., 2011).

During the training runs, participants in the no-feedback 
control group were instructed to use the same types of cogni-
tive strategies as above (e.g., thinking of rewarding things) to 
increase their sense of reward and degree of motivation but 
were not provided with feedback about brain activity. Like 
the intervention group, they were presented with a thermom-
eter on a background that alternated between yellow (rest) 
and green (upregulate). However, the height of the thermom-
eter was fixed (half full of red bars) throughout the run.

Post‑training run

Following the three training runs, participants in both the 
intervention and control groups performed a 6-minute “post-
training” run, where they were again asked to try to upregu-
late activity in brain reward areas using cognitive strategies 
(e.g., thinking of something rewarding) without receiving 
neurofeedback (i.e., the thermometer remained half-full 
throughout the run for each group). At the conclusion of the 
post-training run, participants provided VAS ratings of their 
craving, affect, and arousal (post-training run VAS).

Anatomical scan and additional task

Next, participants completed a 6-minute structural scan, dur-
ing which participants viewed a computer-generated video 
presentation designed to minimize head movement (Vander-
wal et al., 2015) and then provided VAS ratings of their crav-
ing, affect, and arousal (post-structural scan VAS). Finally, 
participants completed a modified version of the Card-Guess-
ing Task, consisting of one 10-minute run during which both 
groups attempted to apply strategies used during the training 
runs while performing the task. Data from this task was not 
the focus of the current study and will be reported elsewhere. 
Participants completed a final VAS assessment of craving, 
affect, and arousal immediately before being removed from 
the scanner (post-scanning VAS).

Post‑scan assessments

Following removal from the scanner, participants completed 
the state version of the PANAS, the QSU-Brief, the MNWS, 
and the SSCCS. Finally, participants in both groups were 
asked to describe the cognitive strategies they used while 
in the scanner and to identify which approaches they felt 
were most effective. Most participants reported that they 

tried thinking about different rewards and identified more 
than one effective strategy. Of the 44 participants, 16 par-
ticipants reported that concentrating on the social rewards 
(e.g., partner’s smiles) was the most effective. Fifteen partici-
pants reported that thinking about the money itself or buying 
expensive things/experiences was effective. Other success-
ful strategies included thinking about food (6 participants), 
achieving personal goals (7 participants), and sexual imagery 
(3 participants). Five participants reported that none of their 
mental strategies worked or that they used other relaxation 
strategies.

Imaging data acquisition

The study was conducted at the Penn State Social, Life, & 
Engineering Sciences Imaging Center using a 3-Tesla Sie-
mens Magnetom Prisma scanner equipped with a 20-chan-
nel head coil. For each participant, a high-resolution, three-
dimensional, T1-weighted, anatomical image was obtained 
by using a magnetization-prepared, rapid acquisition gradi-
ent echo pulse sequence (repetition time = 2,300 ms, echo 
time = 2.28 ms, field of view = 256 mm, flip angle = 9°, 
1.0 x 1.0- x 1.0-mm voxels, 192 sagittal slices). Functional 
images were collected using a one-shot echo-planar imag-
ing pulse sequence (repetition time = 2,000 ms, echo time 
= 25 ms, field of view = 192 mm, flip angle = 80°, 3.0- x 
3.0- x 3.0-mm voxels, 35 axial slices acquired parallel to the 
anterior commissure-posterior commissure plane).

Localization of target ROIs

As indicated earlier, the Card-Guessing Task was used to 
localize reward-related ROIs for each participant. This was 
performed during the scan session for those in the neurofeed-
back condition and during offline analysis for those in the 
control condition using Turbo BrainVoyager software (version 
3.2; Weiskopf et al., 2003). Briefly, Turbo-BrainVoyager rap-
idly preprocessed and analyzed incoming fMRI data by way 
of incremental general linear models (GLMs), which included 
a predictor for each type of task block condition (high gain 
and high loss) convolved with a hemodynamic reference func-
tion. The first ten volumes of the sequence were discarded to 
avoid T1 saturation effects. Data were corrected for motion 
(both translational and rotational) and spatially smoothed 
(4-mm FWHM Gaussian kernel) online. Target ROIs within 
the striatum were isolated using a contrast of high reward 
> high loss, enabling the localization of brain (i.e., striatal) 
areas that were maximally responsive to nondrug (monetary) 
rewards relative to losses within individuals. Signal from the 
subject-specific voxels identified with the localizer task was 
used to calculate the feedback presented to participants in the 
neurofeedback group during the subsequent training runs, as 
detailed above (see Section, Training runs).
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Preprocessing for offline analysis

Processing of the fMRI data was performed by using FSL 
(FMRIB’s Software Library, www. fmrib. ox. ac. uk/ fsl; ver-
sion 5.0.9). Registration to high-resolution structural and 
standard space (2-mm resolution Montreal Neurological 
Institute [MNI] template) images was performed by using 
FLIRT (Jenkinson et al., 2002; Jenkinson & Smith, 2001). 
Registration from high-resolution structural to standard 
space was then further refined by using FNIRT nonlinear 
registration (Andersson et al., 2007a, 2007b). The following 
prestatistics processing was applied: motion correction using 
MCFLIRT (Jenkinson et al., 2002); slice-timing correction 
using Fourier-space time-series phase-shifting; nonbrain 
removal using BET (Smith, 2002); spatial smoothing using a 
Gaussian kernel of FWHM 5 mm; grand-mean intensity nor-
malization of the entire 4D dataset by a single multiplicative 
factor; and high-pass temporal filtering (Gaussian-weighted 
least-squares straight line fitting, with sigma = 45.0 s).

Analysis plan

ROI analysis

Multilevel modeling was used to assess the effect of the neu-
rofeedback intervention on the ability to increase BOLD acti-
vation in individually identified striatal ROIs (quantified as 
percent signal change extracted using Featquery), following 
an approach utilized by prior fMRI neurofeedback research 
(Hartwell et al., 2016). This approach is conceptually com-
parable to a repeated-measures ANOVA but has several 
advantages; primarily, it uses maximum likelihood estima-
tion to handle missing data, while an ANOVA uses listwise 
deletion. Fixed effects for group (intervention vs. control), 
time (training runs 1 through 3) and a group x time inter-
action were estimated. Baseline ability to increase striatal 
BOLD activation during the pre-training run was included as 
a covariate. Participants were specified as a random factor to 
control for the influence of different mean scores (intercepts) 
for each individual (i.e., a random intercept model; Pinheiro 
& Bates, 2000). The model was fitted using the nlme pack-
age within the R software environment. We hypothesized 
that groups would emerge as a significant predictor of ROI 
activation during training runs. Specifically, we hypothesized 
that individuals in the intervention group would demonstrate 
significantly larger increases in activation during the train-
ing runs than controls. We further hypothesized that there 
would be a significant group by time interaction, such that 
the intervention group would display a larger increase in the 
ability to upregulate striatal activation in later training runs 
than the control group. T-tests were conducted to investigate 
significant differences associated with interaction effects (i.e., 
to compare group differences for each run).

A multilevel model was also conducted using the pre- and 
post-training run data to investigate whether the two groups 
differed in ability to upregulate striatal activation following 
the training protocol. Due to time constraints, one participant 
in the control group did not complete the post-training run; all 
available data were included in the model. Similar to above, 
we predicted that there would be a significant group by time 
interaction, with individuals in the intervention group exhibit-
ing a significantly larger increase in ROI activation from the 
pre-training run to the post-training than those in the control 
group. Significance of effects was evaluated at α = 0.05.

Exploratory whole‑brain analysis

Two exploratory whole-brain analyses were conducted at the 
group level using 3dLME (Chen et al., 2013) from the Analy-
sis of Functional NeuroImages (AFNI; version 17.3.03) suite 
(Cox, 1996). The first model included data from the training 
runs. As before, fixed effects for group (intervention vs. control) 
and time (training runs 1 through 3) as well as their interaction 
were estimated along with random intercepts per participant, 
and pre-training maps were included as a voxel-wise covari-
ate. A second model assessed the pre- and post-training data 
and included fixed effects for group, time (pre-training run, 
post-training run), and a group x time interaction (with post-
training run data missing for one participant, as noted above). 
The threshold for each model was determined with the AFNI 
program 3dClustSim using the following parameters: a cluster-
forming threshold of p = 0.001; 10,000 Monte Carlo simula-
tions; and average smoothness of the residuals across partici-
pants, as estimated using the spatial autocorrelation function 
implemented in the AFNI program 3dFWHMx (Cox et al., 
2017). Using this approach, it was determined that combining 
a cluster-forming threshold of p = 0.001 with minimum cluster 
sizes of 66 voxels (528  mm3) and 68 voxels (544  mm3) would 
achieve a family-wise error corrected p < 0.05 at the cluster 
level for the first and second models, respectively; only clusters 
meeting these criteria were considered significant. Whole-brain 
analyses were not designed to test specific hypotheses and are 
included primarily to facilitate future research.

Analysis of self‑report data

Changes in subjective ratings of affective valence, level of 
arousal, and urge/craving to smoke taken throughout the scan 
were similarly assessed using a mixed-effects framework, 
controlling for pre-scan (baseline) ratings. In each case, fixed 
effects for group (intervention vs. control), time (post-localizer 
task VAS, post-training run VAS, post-structural scan VAS, 
post-scanning VAS), and a group x time interaction were esti-
mated. For each model, pre-scan VAS (baseline) ratings were 
included as a covariate, and participants were specified as a 
random factor to control for the influence of different mean 

http://www.fmrib.ox.ac.uk/fsl;
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scores (intercepts) for each individual. Mixed-effects models 
were also conducted using the pre- and post-scan questionnaire 
data measuring symptoms of nicotine withdrawal (MNWS), 
state positive and negative affect (state version of the PANAS), 
urge to smoke (QSU-Brief), and mental energy/fatigue 
(SSCCS). Two participants (both in the intervention group) 
failed to complete the QSU-Brief and SSCCS before the scan, 
and one participant (control group) failed to complete the 
QSU-Brief, SSCCS, state version of the PANAS, and MNWS 
after the scan. In addition, the following VAS ratings were 
missing due to technical error and/or time constraints: pre-scan 
ratings for two participants (both in intervention group); post-
training runs ratings for two participants (both in the control 
group); post-structural scan ratings for one participant (control 
group); and post-scanning ratings for seven participants (three 
in intervention group and four in control group). Analyses of 
subjective ratings included all available data.

Results

Sample characteristics

Table 1 reports select demographic and smoking-related 
characteristics for the full sample and for each group. The 
self-identified racial and ethnic composition of the usable 
sample was as follows: 65.9% Caucasian; 20.5% Asian; 
9.1% multiracial; 2.3% black or African American; 2.3% 
American Indian or Alaskan Native; 95.5% of participants 
identified as not Hispanic or Latino; and 4.5% identified 
as Hispanic or Latino. Groups were similar in terms of 
age, distribution of gender or self-identified race/ethnic-
ity, cigarettes/day, years smoking, nicotine dependence (as 

assessed using the Fagerström Test for Cigarette Depend-
ence [FTCD]; Fagerström, 2012), years of education, and 
employment status (p values > 0.3).

Localization of target ROIs

Target ROIs localized to the striatum (primarily the cau-
date nucleus) were successfully identified for all partici-
pants using the Card-Guessing Task. The average loca-
tion and size of target ROIs was similar across groups. 
Regarding the former, the mean (SD) MNI coordinates 
for the center of gravity of the target ROIs were x = 2.5 
(8.5), y = 11.1 (6.2), z = 6.7 (3.6) for the neurofeedback 
group and x = 1.9 (4.1), y = 11.5 (3.9), z = 4.3 (4.9) for 
the control group. Figure 3 shows the center of gravity of 
the individually identified ROIs in MNI space for each 
group (coordinates for each participant are presented in 
Supplemental Table 2). The mean (SD) volume of target 
ROIs was 5,734.5 (4,374.3)  mm3 for the neurofeedback 
group and 4,236.7 (3,917.7)  mm3 for the control group; 
this difference was not significant (t(42) = 1.20, p > 0.2).

ROI analysis

Training runs

Results of the linear mixed-effects model predicting activa-
tion in striatal ROIs during the training runs are presented in 
Table 2. There was a significant positive association between 
activation of striatal ROIs during the pre-training and training 
runs (β = 0.50, p < 0.001). Group also was significantly asso-
ciated with activation of striatal ROIs during the training runs 

Table 1  Sample characteristics

Full sample
(n = 44)

Neurofeedback group
(n = 22)

Control group
(n = 22)

Mean (SD) age in years 26.7 (7.5) 26.2 (7.6) 27.2 (7.6)
Number male/female 34/10 17/5 17/5
Mean (SD) cigarettes/day 14.6 (6.7) 13.7 (6.4) 15.5 (7.1)
Mean (SD) years of regular smoking 9.7 (7.8) 8.8 (7.5) 10.6 (8.2)
Mean (SD) FTCD score 3.9 (2) 4.2 (1.9) 3.7 (2.1)
Education level (percentages)
          < High school graduate 2.3 4.5 0
          High school graduate or GED 31.8 27.3 36.4
          Some college or technical school 50 59.1 40.9
          Four-year college graduate 16 9.1 22.7
Employment status (percentages)
          Unemployed 54.5 54.5 54.5
          Employed part-time 22.7 18.2 27.3
          Employed full-time 22.7 27.3 18.2
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(β = 0.24, p = 0.02), such that the intervention group demon-
strated significantly larger increases in activation during the 
training runs compared to the control group. However, there 
was also a trend-level group x time interaction (β = −0.07, p 
= 0.06), suggesting that the main effect of group was not dis-
tributed evenly across training runs. As shown in Fig. 4, those 
in the intervention group demonstrated significantly greater 
activation of striatal ROIs during training run 1 only (t(42) = 
2.19, p = 0.03); there were no significant differences in acti-
vation between the groups during training runs 2 and 3 (t(42) 
= 1.20, p = 0.24 and t(42) = 0.58, p = 0.57, respectively).

Follow-up t-tests revealed that the two groups did not 
differ in the activation of striatal ROIs during pre-training 
baseline (t(42) = −0.60, p = 0.55). We tested the signifi-
cance of the change of activation from pre-training baseline 
to training run 1 for each group. There was a nonsignificant 
increase in activation from baseline to run 1 for the inter-
vention group (t(21) = 1.41, p = 0.17), whereas there was a 
nonsignificant decrease of activation from baseline to run 1 
for the control group (t(21) = 1.76, p = 0.09).

Pre‑/post‑training runs

Analysis of data from the pre- and post-training runs indi-
cated that activation of striatal ROIs was not significantly 
associated with group (β = −0.07, p = 0.64), time (pre- ver-
sus post-training; β = 0.04, p = 0.55), or the group x time 
interaction (β = 0.02, p = 0.84).

Whole‑brain analyses

Training runs

A main effect of time was observed in the right angular 
gyrus (MNI coordinates for local maximum: x = 54, y = 
−54, z = 12; size = 158 voxels/1,264  mm3); activation was 
lower in this region during the first training run relative to 

the second and third training runs, while activation was simi-
lar for the latter two runs. Both a main effect of group and a 
group x time interaction were observed in the right inferior 
frontal gyrus (rIFG) extending to portions of the anterior 
insula, with significant spatial overlap in these effects. Fig-
ure 5A depicts the location of the main effect (x = 40, y = 
20, z = 6, 116 voxels/928  mm3) and interaction (x = 38, y 
= 22, z = 8; 87 voxels/696  mm3). Figure 5B presents mean 
activation across training runs (adjusted for activation during 
the pre-training run) for both groups in the region exhibiting 
an interaction effect. As shown, those in the intervention 
group demonstrated significantly greater activation than con-
trols during training run 1, with no significant differences in 
activation between groups for training runs 2 and 3.

Pre‑/post‑training runs

There was a significant main effect of group in the poste-
rior cingulate gyrus (x = −6, y = −56, z = 12; size = 330 

Fig. 3  Glass brain showing the center of gravity of the region of interest for each participant in the neurofeedback and control groups in Mon-
treal Neurological Institute space

Table 2  Linear mixed-effects model predicting activation (percent 
signal change) in ROIs during the training runs

AIC = Akaike information criteria; BIC = Bayesian information cri-
teria; CI = confidence intervals. *indicates p < 0.05

Fixed effects Estimate Standard Error
    Intercept (γ00) −0.07 0.07
    Pre-training (γ01) 0.50* 0.12
    NFBK group (γ02) 0.24* 0.10
    Time (γ10) 0.04 0.03
    NFBK group * Time (γ11) −0.07 0.04

Random effects Estimate 95% CI
    Intercept (σ2

w0) 0.18* 0.14–0.24

Fit indices
    AIC 15.74
    BIC 35.64
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voxels/2,640  mm3), with the intervention group having lower 
activation in this region than the control group. No regions 
exhibited a significant main effect of time or group x time 
interaction.

Subjective ratings analysis

Results from the linear-mixed effects models predicting 
change in affective valence, level of arousal, and urge/craving 
to smoke during the scan (VAS ratings) indicated no signifi-
cant main effects of group or group x time interactions on any 
of the three outcomes (Table 3). However, significant main 
effects of time were found predicting affective valence (β = 
−5.14, p < 0.001) and urge/craving to smoke (β = 5.21, p < 
0.001), such that valence ratings decreased (i.e., became less 
positive) and craving increased over the course of the experi-
mental session. Similarly, models predicting pre- to post-scan 
changes in response to questionnaires assessing symptoms 
of nicotine withdrawal (MNWS), state positive and negative 
affect (state version of the PANAS), smoking urge (QSU-
Brief), and mental energy/fatigue (SSCCS) found no signifi-
cant main effects of group or group x time. Main effects of 
time were found in models predicting symptoms of nicotine 
withdrawal (β = 7.41, p < 0.001), smoking urge (β = 9.68, p 

= 0.02), and mental energy/fatigue (β = −26.05, p = 0.01), 
indicating that, regardless of group, participants demonstrated 
greater levels of nicotine withdrawal symptomatology and urge 
to smoke, as well as lower levels of mental energy, following 
the scan compared with the pre-scan assessment. Mean VAS 
ratings and scores on experimental session questionnaires are 
presented in Supplemental Tables 3 and 4, respectively.

Discussion

The present proof-of-concept study investigated whether 
real-time fMRI neurofeedback techniques could be used to 
train people who smoke cigarettes on a daily basis to voli-
tionally increase striatal activity. Results indicate that over-
all, participants who received neurofeedback showed greater 
striatal activation during up-regulation blocks than the con-
trol group during the three training runs. Specifically, dur-
ing the first training run, those in the neurofeedback group 
exhibited significantly greater activation (quantified as per-
cent signal change) relative to the control group. However, 
the effect of neurofeedback attenuated and did not main-
tain statistical divergence from the control condition during 
training run 2 and 3. Across the three training runs, striatal 

Fig. 4  Barplot showing mean activation between the neurofeedback and control groups, controlling for the activation during pre-training run
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Fig. 5  (A) Brain figure showing overlapping areas of the right infe-
rior frontal gyrus and anterior insula exhibiting a main of group and a 
group x time interaction. Areas exhibiting only a main effect of group 
or an interaction effect are depicted in yellow and blue, respectively, 

whereas overlapping areas are depicted in orange. (B) Barplot show-
ing mean differences in activation between the neurofeedback and 
control groups across the three training runs in the region exhibiting a 
significant group x time interaction

Table 3  Mixed-effects models predicting subjective ratings of affective valence, arousal, and craving (VAS ratings)

*indicates p < 0.05

Affective valence Arousal Craving

Fixed effects Estimate (SE)
    Intercept (γ00) 58.29* (13.71) 45.78* (9.74) 15.24* (6.15)
    Pre-scan baseline (γ01) 0.20 (0.16) 0.26* (0.12) 0.57* (0.11)
    NFBK group (γ02) 0.06 (8.22) 5.16 (8.47) 10.60 (7.24)
    Time (γ10) −5.14* (1.30) −2.89 (1.53) 5.21* (1.03)
    NFBK group * Time (γ11) 2.83 (1.86) −1.32 (2.19) −0.39 (1.48)

Random effects Estimate (95% CI)
     Intercept (σ2

w0) 18.16* (13.83–23.85) 15.09* (10.88–20.91) 17.68* (13.72–22.78)
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activation decreased with time in the neurofeedback group. 
In contrast, striatal activation did not change significantly 
over time during the training runs for the control group. 
Furthermore, the neurofeedback and control groups did 
not differ in striatal activation during the post-training run, 
indicating a lack of transfer effect following the removal of 
neurofeedback. Taken together, the findings did not provide 
support for our hypothesis that neurofeedback training would 
significantly enhance the ability to upregulate reward-related 
brain activation in people who smoke.

Although the presentation of neurofeedback was asso-
ciated with an initial increase in striatal activation rela-
tive to the control condition, we cannot conclude that this 
increase in activation was an effect of a volitional control 
of the striatum. The time-limited effect of neurofeedback 
may have been driven by effects other than those specifically 
targeted by neurofeedback (Ros et al., 2020). That is, inde-
pendent from the act of volitionally controlling the target 
region, other factors, such as the novelty of the neurofeed-
back information, could have served as a reward, driving 
the initial increase of striatal activation for individuals who 
received neurofeedback. This could help to explain why the 
neurofeedback group displayed a nonsignificant increase in 
striatal activation during the first training run relative to their 
pre-training baseline, whereas the control group showed a 
nonsignificant decrease in striatal activation across this 
period. Similarly, various factors may have influenced the 
subsequent attenuation of the group difference across the 
second and third training runs, such as participants’ habitu-
ation to the novelty of the neurotechnological information 
or a greater increase in fatigue over time in the intervention 
group compared with the control group. It is difficult to rule 
out these and related possibilities without the inclusion of 
additional control groups (e.g., sham control) to account for 
the intrinsically rewarding effect of receiving neurofeedback.

Our results are inconsistent with previous findings 
that fMRI-based neurofeedback targeting reward-related 
regions is effective when used to train people who are 
healthy (Greer et al., 2014; Kirsch et al., 2016; Li et al., 
2018; MacInnes et al., 2016). This inconsistency high-
lights important points about conducting neurofeedback 
training with different populations. Given prior evidence 
suggesting that chronic exposure to nicotine is associated 
with attenuated striatal response to natural rewards (Rose 
et al., 2012), people who smoke may have greater diffi-
cultly learning to self-regulate activity in reward-related 
regions via neurofeedback than those who do not smoke. 
A growing body of neurofeedback studies suggests that 
brain regions involved in reward processing (including 
the striatum) play a key role in the acquisition of self-
regulatory skills for brain activity during neurofeedback 
training (Sitaram et al., 2017). For instance, a recent study 
demonstrated that better neurofeedback performance was 

associated with greater activation within the striatum 
across different mental tasks (Skottnik et al., 2019). This 
may imply that people with chronic exposure to nicotine 
have altered functioning in the very region that is involved 
in learning and benefiting from neurofeedback.

Even so, there is some evidence that people who smoke 
can benefit from neurofeedback training, especially related 
to reducing cue-reactive craving (Canterberry et al., 2013; 
Hanlon et al., 2013; Hartwell et al., 2016; Li et al., 2013). 
However, a recent review paper highlighted the limitations 
of previous neurofeedback studies on smoking, in that most 
were underpowered and lacked an adequate control condi-
tion (Pandria et al., 2020). It will be important for future 
research examining the clinical utility of neurofeedback for 
the treatment of smoking and other substance use problems 
to address such limitations (e.g., by including larger sam-
ples and adopting designs that increase internal validity), 
as well as explore ways to tailor neurofeedback training to 
the unique needs of the targeted population. As shown in 
the present study, participants in both groups experienced 
increasingly more negative affect, more fatigue, and stronger 
urge to smoke over the course of the training, which could 
have interfered with learning. To make neurofeedback 
trainings more efficient and mentally less draining, com-
plementary strategies designed to enhance reward sensitiv-
ity may serve as a particularly useful addition for people 
who smoke and other populations characterized by reward-
related deficiencies. A recent review article highlighted 
systematic mental imagery training, which has proven to 
be an effective treatment for various psychological disor-
ders (including depression, anxiety disorders, and addic-
tion), as a tool for enhancing the potency of neurofeedback 
interventions (Skottnik & Linden, 2019). Moreover, recent 
work has shown that formal mental imagery training can be 
used to enhance the subjective experience of reward. For 
example, studies testing a relatively new intervention called 
Mindfulness-Oriented Recovery Enhancement (MORE) that 
incorporates mental imagery have shown that it is effective 
for increasing both reward-related activation of the ventral 
striatum (i.e., ventral portions of the caudate nucleus and 
putamen) and positive affect (Froeliger et al., 2017; Garland, 
2016). Future research examining the utility of combining 
interventions such as MORE with neurofeedback to increase 
reward sensitivity in people who smoke would be valuable.

Furthermore, a closer look at previous neurofeedback 
studies targeting the mesolimbic dopaminergic system 
reveals methodological variability that makes it challeng-
ing to generalize and reproduce findings. One issue is that 
the approaches used to evaluate regulation success differ 
widely across studies. For instance, improved activation 
during training runs relative to the pre-training run (Sulzer 
et al., 2013), significant within-person difference in peak 
activation during feedback versus no-feedback blocks (Greer 
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et al., 2014), linear increase in activation across the training 
runs (Li et al., 2018), greater sustained activation during 
regulation trials relative to a control group (MacInnes et al., 
2016), and greater sustained activation during post-training 
relative to pre-training and to control group (MacInnes et al., 
2016), have all been cited as evidence that neurofeedback 
helps improve participants’ ability to control reward-related 
brain activity. Similarly, prior studies have used different 
baselines to calculate feedback. A consensus regarding ana-
lytic approaches and reporting standards will help elucidate 
the effectiveness of neurofeedback targeting brain reward 
regions in both clinical and nonclinical populations (Fede 
et al., 2020; Paret et al., 2019; Ros et al., 2020).

It is important to note several limitations of the current 
study. As discussed earlier, we included a control group 
that practiced similar mental strategy but without feedback. 
Because neurofeedback research with clinical population is 
still in an exploratory stage, we hoped to establish whether 
neurofeedback training improved the ability to self-regulate 
brain activity in reward-related areas compared with sim-
ple mental imagery instructions alone as an initial step in 
a broader line of research. Although we believe that the 
approach adopted in the current study is a reasonable first 
step (Sorger et al., 2019), it does not allow for the effect 
of volitional control of the striatum to be separated from 
the rewarding effect of the neurofeedback information. This 
issue could be addressed using other control conditions, such 
as sham feedback from a non-target brain region or from a 
matched participant assigned to the neurofeedback group. 
However, there is some evidence that such controls can 
produce frustration as well as an incongruence between the 
feedback and participants’ internal representation (Hartwell 
et al., 2016; Sorger et al., 2019), both of which could affect 
striatal activity. Another limitation of the current study is 
that it consisted of only one session of neurofeedback train-
ing. Because we instructed the participants to test different 
strategies to increase the neurofeedback thermometer instead 
of relying on one mental imagery, the striatal activation may 
not have increased in a linear way across the three training 
runs. Assessing longer-term change (e.g., over multiple scan 
sessions), which might provide more of an opportunity to 
practice effective strategies identified through trial and error, 
may better capture the effects of learning. In a multivisit 
neurofeedback study involving the regulation of craving-
related activity in people who smoke, Hartwell et al. (2016) 
found that the performance improved incrementally across 
three visits in the neurofeedback group. Future research 
could investigate the ability to upregulate brain responses 
to nondrug rewards across multiple sessions to ascertain the 
optimal amount of training. Finally, the inclusion of peo-
ple who smoke who were not interested in quitting as par-
ticipants in the current study and the fact that participants 
were trained in a state of minimal cigarette deprivation limit 

generalizability to clinical contexts. Research addressing 
these issues by directly testing the extent to which reward-
focused neurofeedback facilitates cessation in people who 
want to quit smoking would be valuable, as would work 
that examines the effectiveness of neurofeedback targeting 
reward processing at different points during a quit attempt 
(e.g., by examining neurofeedback as a relapse prevention 
tool after cessation has been initiated).

In summary, we found a significant difference in the ability 
to increase striatal activation between people who smoke who 
were provided with neurofeedback compared to those who were 
not, but this difference was short lived and may not specifically 
reflect learning effects. Taken together, the results from the cur-
rent study suggest that simply instructing people who smoke to 
use reward-related mental imagery while providing them with 
neurofeedback may not be sufficient to teach them to self-reg-
ulate activity in the striatum. Although this may appear incon-
sistent with previous neurofeedback studies targeting brain 
reward areas, closer inspection of these studies highlights key 
methodological inconsistencies that make it difficult to draw 
strong conclusions from prior work. In addition to resolving 
such inconsistencies, future research focused on people who 
smoke and other clinical populations characterized by reduced 
sensitivity to rewards (e.g., people addicted to substances other 
than nicotine, people with depressive disorders) should examine 
whether the effectiveness of neurofeedback can be increased by 
lengthening the duration of the intervention (e.g., using multi-
ple sessions) and/or by combining it with promising treatment 
techniques such as comprehensive mental imagery training. 
Doing so would help to identify boundary conditions regarding 
the potential utility of neurofeedback targeting reward function-
ing in people who smoke and other clinical populations.
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