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Abstract 1 Functional magnetic resonance imaging (fMRI) is a noninvasive tool used to probe 2 cognitive and affective processes. Although fMRI provides indirect measures of neural 3 activity, the advent of fMRI has allowed for a) the corroboration of significant animal 4 findings in the human brain and b) the expansion of models to include more common 5 human attributes that inform behavior. In this review, we briefly consider the neural basis 6 of the blood oxygenation level dependent (BOLD) signal to set up a discussion of how fMRI 7 studies have applied it in examining cognitive models in humans, and the promise of using 8 fMRI to advance such models. Specifically, we illustrate the contribution that fMRI has 9 made to the study of reward processing, focusing on the role of the striatum in encoding 10 reward-related learning signals that drive anticipatory and consummatory behaviors. For 11 instance, we discuss how fMRI can be used to link neural signals (e.g., striatal responses to 12 rewards) to individual differences in behavior and traits. While this functional segregation 13 approach has been constructive to our understanding of reward-related functions, many 14 fMRI studies have also benefitted from a functional integration approach that takes into 15 account how interconnected regions (e.g., corticostriatal circuits) contribute to reward 16 processing. We contend that future work using fMRI will profit from using a multimodal 17 approach, such as combining fMRI with noninvasive brain stimulation tools (e.g., 18 transcranial electrical stimulation) that can identify causal mechanisms underlying reward 19 processing. Consequently, advancements in implementing fMRI will promise new 20 translational opportunities to inform our understanding of psychopathologies.  21         
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Introduction 22 Functional magnetic resonance imaging (fMRI) is an excellent tool to probe neural 23 function. Even though it indirectly measures neural activity by tracking correlative 24 hemodynamic changes, it has the capability to map task-dependent whole-brain activation. 25 This feature, along with its noninvasive nature, makes fMRI a tremendous asset to the 26 study of cognitive and affective processes in both healthy and patient human populations.   27 Indeed, the application of fMRI to study the human brain has allowed for a) confirmation of 28 core findings from non-human animal studies that have shaped models of cognitive and 29 affective processing; and b) extension of those findings and new directions for such models 30 by probing characteristics more accessible in humans. One noteworthy example is the 31 study of reward processing, which has been informed by a rich non-human animal 32 literature employing an array of techniques, from selective lesions to electrophysiological 33 recordings, to delineate a neural reward circuit (e.g., Berridge and Robinson 2003; Robbins 34 and Everitt 1996; Schultz 2006). An explosion of fMRI studies over the last decade or so 35 (Fig. 1) has substantiated this reward circuit in the human brain, with emphasis on higher-36 level functions that are more commonly observed in humans. Many of these fMRI studies 37 have also examined deficits in the reward circuit in patient populations. As a result, the use 38 of fMRI to study reward processing has greatly expanded our understanding of its neural 39 basis in humans.  40 Despite the many advantages that fMRI has afforded the study of reward processing, 41 there are some inherent challenges that discount the full promise of fMRI. For instance, the 42 neurophysiological nature of the fMRI signal can cloud its potential neural interpretations.  43 While we address these limitations, our synthesis of the literature highlights the promise of 44 fMRI in advancing models of cognitive and affective processes. First, we describe the fMRI 45 blood oxygenation level dependent (BOLD) signal and consider potential pitfalls related to 46 its neural interpretations. Second, we illustrate the use of fMRI in both confirming key 47 findings and extending such findings to advance models of cognitive and affective 48 processing. We specifically anchor our discussion on the study of reward processing as an 49 exemplar topic because it has garnered considerable experimental efforts across 50 techniques and species. In the last section, we highlight the promise of fMRI in studying 51 
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reward processing and describe how it fits into the progressive multimodal and across-52 technique approach to study such psychological phenomena.  53 
A Neural Interpretation of the BOLD Signal in fMRI 54 Functional magnetic resonance imaging (fMRI) detects neural activation by 55 measuring changes in the blood oxygenation level dependent (BOLD) signal. The BOLD 56 signal is coupled to hemodynamic changes such as blood flow (Logothetis and Wandell 57 2004) and decreasing levels of deoxygenated hemoglobin (deoxyhemoglobin; Ogawa et al. 58 1992), whose paramagnetic nature allows BOLD to indirectly track the underlying neural 59 activity. Taking into account the many comprehensive and informative reviews (Buxton et 60 al. 2004; Logothetis 2008; Logothetis and Wandell 2004) on the technical underpinnings of 61 fMRI and its BOLD signal, we provide below a succinct and generalized account of the 62 neural interpretation of the BOLD signal and how it is typically analyzed in fMRI 63 experiments to infer neural functions. In doing so, we hope to provide readers of all 64 backgrounds with sufficient understanding of the fMRI findings we present throughout the 65 review and appreciation for the advantages of fMRI we subsequently discuss for the rest of 66 the paper.  67 
The Cellular Underpinnings of the BOLD Signal 68 Throughout various fMRI studies, most experimental protocols observe BOLD 69 signals that correspond to localized increases in cerebral blood flow (CBF). These CBF 70 increases, coupled with smaller positive changes in the cerebral metabolic rate of oxygen 71 consumption, lead to the production of a hemodynamic response (Buxton and Frank 1997; 72 Hoge et al. 1999; Raichle et al. 1976).  Importantly, unlike the immediate nature of 73 neuronal spiking activity (Lauritzen and Gold 2003), the hemodynamic response has a 74 lagged response that begins approximately two seconds after neural stimulation and peaks 75 four to six seconds thereafter (Bandettini et al. 1992). Although the hemodynamic response 76 was initially interpreted to represent neuronal output (Rees et al. 2000), subsequent 77 studies soon reported robust BOLD signals in the absence of spiking activity (Rauch et al. 78 2008; Viswanathan and Freeman 2007), fueling the interpretation of BOLD signal as an 79 



JN-00333-2015                                                                                                        Wang, Smith, Delgado    

Page 5 of 49 

indicator of the underlying local field potential (LFP; Goense and Logothetis 2008; 80 Logothetis 2002; 2008; Magri et al. 2012; Nir et al. 2007). Because LFP underlines the 81 synaptic inputs and dendritic processing in a particular region (Berens et al. 2010), the 82 LFP-driven hemodynamic response is more strongly encoded by aggregate cellular activity 83 within a localized excitation-inhibition network rather than single cell activity (see review 84 by Logothetis and Panzeri 2015). Thus, the neurophysiological underpinnings of the BOLD 85 signal are thought to reflect local field potential during neural stimulation.  86 Some experimental protocols also detect negative BOLD responses (NBR) that are 87 postulated to reflect neuronal suppression (Wade 2002). Although there is no widely 88 accepted neurophysiological explanation of NBR, it is clear is that one cannot simply 89 assume that NBR is the neurophysiological inverse of a hemodynamic response (Mullinger 90 et al. 2014). The current neuronal explanation of NBR is divided into two camps of thought. 91 On one end of the debate, Shmuel and colleagues (2006) observed that NBR was tightly 92 coupled to local decreases in LFP, which led to the view that NBR is a representation of 93 neural deactivation (Hayden et al. 2009; Klingner et al. 2010; Mckiernan et al. 2003; Pasley 94 et al. 2007). On the opposite end lie those who, guided by Logothetis and his metabolic-95 increasing excitation-inhibition microcircuit viewpoint (Logothetis 2008), put forth the 96 argument that NBR encodes underlying neural activation (Kim et al. 2014; Schridde et al. 97 2008; Shulman et al. 2007). In essence, the interaction between CBF and blood volume 98 changes encodes the excitation-inhibition balance, giving rise to NBR (Huber et al. 2014). 99 Despite the irresolute nature of this debate, continued progress on understanding the 100 neural nature of NBR is important to provide more insights on the BOLD signal and to 101 further refine the role that different neural regions play in cognitive processes.  102 
From BOLD Signals to Inferences on Brain Function 103 Neuroimaging studies tend to visualize the hemodynamic response (e.g., plot the 104 time-series of the data) but more commonly report parameter estimates summarizing the 105 fit of a statistical model to the BOLD data (e.g., Fig. 2). To obtain these parameter estimates, 106 the known stimulus functions based on preset experimental conditions are first convolved 107 with a canonical hemodynamic response function to establish the predicted BOLD 108 responses. Predicted BOLD responses are subsequently used to test, under the framework 109 
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of the general linear model (Friston et al. 1994; Worsley and Friston 1995), whether 110 activity in brain regions is related to any of the BOLD input functions (e.g., the raw data). 111 Most fMRI studies report statistical fit of the BOLD functions as a series of parameter 112 estimates, which can have both positive and negative deflections relative to pre-stimulus 113 activation (for details on fMRI analysis and issues such as multiple comparisons please see 114 Poldrack et al. 2011). It is important to distinguish these negative deflections from NBR 115 because negative parameter estimates reflect relative deviations from the implicit baseline 116 in the model rather than the measured BOLD signals. In addition, we note that statistical 117 inference in fMRI studies can suffer from many of the same problems that affect 118 neurophysiological studies, including circular analyses (Kriegeskorte et al. 2009) and 119 erroneous interactions (Nieuwenhuis et al. 2011). Nonetheless, these parameter estimates 120 derived from BOLD responses have served fMRI researchers well, as we will discuss in 121 detail throughout the rest of this review, in advancing the understanding of neural activity 122 during task-induced cognitive and affective processes.  123 
Using fMRI to Study Reward Processing in the Striatum 124 Given its noninvasive nature and potential to visualize function in the whole brain, 125 fMRI became a powerful and practical tool to study cognitive and affective processes in 126 humans. Over the years, the use of fMRI proved to be an important asset in studying such 127 processes as it afforded a way to confirm basic findings characterized in non-human animal 128 studies, and extend such findings to appreciate various aspects of human life, from 129 distinctively human stimuli (e.g., money) to behaviors (e.g., cognitive emotion regulation) 130 that translated to better understanding of neuropsychiatric disorders (e.g., mood 131 disorders). One such phenomenon that benefitted from the proliferation of fMRI studies is 132 reward-related processing and its relation to decision making (Fig. 1). Rewards can be 133 broadly defined as stimuli that elicit approach behaviors, induce subjective feelings of 134 pleasure during consumption, and lead to reinforcement of cues and actions (Schultz 2006; 135 2015). The regulation of the psychological and behavioral responses to rewarding stimuli is 136 coordinated by a collection of cortical and subcortical structures that together make up the 137 brain’s reward circuit (see review by Haber and Knutson 2010). At the core of such circuit 138 
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is the striatum (Fig. 3), a subcortical structure that is involved in reward-related learning 139 and how it informs approach and consummatory behaviors.  140 Building on a large repertoire of studies using non-human animal models (Daw and 141 Doya 2006; Hikosaka et al. 1989; Robbins and Everitt 1996; Schultz et al. 1997), many fMRI 142 experimental efforts have focused on elucidating how the striatum—the input unit of the 143 basal ganglia and a structure with strong connections with cortical regions and midbrain 144 dopaminergic centers (Middleton and Strick 2000; Wang et al. 2015b)—contributes to 145 reward processing (Fig. 3; e.g., for review see Bartra et al. 2013; Clithero and Rangel 2014; 146 Delgado 2007; Haber and Knutson 2010; Smith and Delgado 2015). In the following 147 section, we will provide a brief discussion of research findings from both non-human 148 animals and humans focusing on the striatal role in reward-related processing, particularly 149 in approach and consummatory behavior, and how they are shaped by learning.    150 
Approach Behaviors in Reward Processing 151 Approaching a potential reward is a typical behavior observed across species that is 152 elicited by the anticipation of the pleasure a reward may bring. In non-human animals, this 153 was initially characterized in studies where presentation of a conditioned stimulus that 154 predicted a reward elicited a conditioned approach response in pigeons (Brown and 155 Jenkins 1968; Williams and Williams 1969) and rats (Locurto et al. 1976; Peterson et al. 156 1972). This conditioned cue-induced approach behavior was found to depend on the 157 integrity of the striatum, such that lesion (Parkinson et al. 1999) or dopaminergic depletion 158 in the ventral parts of the striatum, particularly the NAcc (Parkinson et al. 2002), decreased 159 approach behavior to a conditioned stimulus paired with reward (Di Ciano et al. 2001; 160 Parkinson et al. 2000).  161 In non-human primates, a similar link between striatum neurophysiological signals 162 and anticipatory responses to reward-related cues that can elicit approach behaviors have 163 been observed. For instance, striatal neurons have been found to increase their firing rates 164 during the anticipatory phase preceding reward delivery, highlighting a potential influence 165 on reward-seeking approach behaviors (Ito and Doya 2015; Kawagoe et al. 1998; McGinty 166 et al. 2013; Samejima et al. 2005). Interestingly, distinct subsections of the striatum can 167 show different contributions to approach behaviors. Ventral striatal neurons, for example, 168 
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have been shown to increase their firing rates in response to cues predicting rewards 169 (Cromwell and Schultz 2003; Hassani et al. 2001; Hollerman et al. 1998; Schultz et al. 170 1992). In contrast, dorsal striatal neuronal responses have been linked with tracking the 171 values of available actions for reward attainment (Lau and Glimcher 2007; 2008; Tai et al. 172 2012). 173 In humans, initial fMRI studies served to replicate findings from non-human animals 174 identifying the striatum as a key region involved in responding to cues that predicted 175 potential rewards and could exert influences on approach behavior. For instance, initial 176 efforts showed that BOLD responses in the ventral striatum, which includes the nucleus 177 accumbens (NAcc; Fig. 3), were correlated with craving of potential drug rewards (Breiter 178 et al. 1997), relating to a motivational construct of ‘wanting’ which can lead to approach 179 behaviors such as reward seeking (Berridge and Robinson 1998). This was quickly 180 followed by reports of increased BOLD responses in the striatum to conditioned cues that 181 predict potential primary rewards including pleasant liquids (O'Doherty et al. 2002) or 182 odors (Gottfried et al. 2002), and secondary rewards such as money (Knutson et al. 2001). 183 As in non-human animals, distinct contributions of subsections of the striatum have also 184 been reported, with the dorsal striatum, encompassing the caudate nucleus and putamen 185 (Fig. 3), being more specifically recruited when participants performed an action (e.g., 186 pressing a button) in response to cues predicting reward (O'Doherty et al. 2004; Tricomi et 187 al. 2004). While dorsal striatum activity has been linked to the encoding of action values 188 used in action selection during reward-seeking behaviors (FitzGerald et al. 2012), ventral 189 striatum activity has been shown to correlate with participant’s passive viewing responses 190 to conditioned stimuli (Chumbley et al. 2014). This observation is in line with the actor-191 critic model (Sutton and Barto 1998) suggesting that the dorsal striatum can serve a 192 potential function of  an “actor” that facilitates action selection whereas the ventral 193 striatum can serve as a “critic” to guide future reward attainment (O’Doherty et al., 2004). 194 More recently, fMRI studies have extended these initial findings of striatal 195 involvement in eliciting reward-related approach behavior to demonstrate how they relate 196 to everyday human behaviors. Increased activation in the striatum to pictures of appetizing 197 food items, for example, has been found to correlate with increased reward-seeking 198 behavior (as assessed by greater weight gain months after initial data acquisition; Demos et 199 
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al. 2012). Similarly, increased activation in the striatum to positive, arousing images 200 (Knutson et al. 2008), and cues that predict monetary rewards (Kuhnen and Knutson 2005) 201 is associated with elevated risk-taking behaviors. The relation between striatal BOLD 202 activity and risk-taking behaviors is observed in different domains, such as drug-related 203 cues elevating craving responses (Sinha et al. 2007), which can have an influence in 204 maladaptive behaviors such as drug-seeking. Finally, this response in the striatum is also 205 dependent on state of an individual (e.g., stressed:  Porcelli et al. 2012; or sleep deprived: 206 Venkatraman et al. 2011) or context in which a reward is perceived. For example, the 207 presence of a peer can change reward-related responses in the striatum (Chein et al. 2011; 208 Fareri et al. 2012), which can relate to increased risk-taking behaviors in some cases (e.g., 209 adolescence; Chein et al. 2011). These studies collectively highlight the use of fMRI in 210 understanding how the brain processes reward-related information and how it contributes 211 to approach behaviors that complement and extend the knowledge gained from non-212 human animal studies. 213 
Consummatory Behaviors in Reward Processing 214  A consummatory behavior occurs during the delivery or receipt of a reward. The 215 consumption of rewards, such as food and sex, induces a pleasurable sensation which can 216 be experimentally elicited in rats when neural regions such as the septal areas (Olds and 217 Milner 1954) and NAcc (Olds 1956) are stimulated. Comparable studies in non-human 218 primates (Porter et al. 1959) and humans (Bishop et al. 1963) have similarly shown that 219 electrical stimulations delivered to the NAcc generates a pleasurable sensation. The 220 hedonic aspects of reward are generally associated with opiate receptors in the NAcc 221 (Peciña and Berridge 2000), but more general affective processing that can inform the 222 reinforcement of actions is evident during reward consumption, being associated to 223 dopamine release into the NAcc (Nakahara et al. 1989) and the firing of striatal neurons 224 (Apicella et al. 1991; Hikosaka et al. 1989; Klein and Platt 2013; Schultz et al. 1993). In 225 rodents, an interesting distinction is further noted where lesions to ventral parts of the 226 striatum disrupt approach behaviors whereas lesions to the more dorsal parts disrupt 227 consummatory behaviors (Everitt and Robbins 2005).  228 
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 In humans, reward consumption is typically probed during the outcome phase of a 229 given task, where, for example, a participant may receive the resolution of a decision (e.g., 230 monetary gain) or be presented with a stimulus that carries a positive value (e.g., liquids 231 when thirsty, pleasant pictures). Several fMRI studies have observed activation in the 232 striatum in response to a rewarding or positive outcome (Fig. 2). This extends to a variety 233 of stimuli, from the most basic such as food (e.g., chocolate; McCabe et al. 2010), money 234 (Fig. 3; Delgado et al. 2000), or just positive feedback (e.g., correct; Delgado et al. 2004; 235 Foerde and Shohamy 2011) related to goal achievement (Tricomi and Fiez 2008) to the 236 more abstract positive feelings elicited from observing a beautiful face (Smith et al. 2010), 237 art (Lacey et al. 2011), receiving social feedback (Izuma et al. 2008), or even thinking about 238 the self, such as when one discloses information about oneself to another (Tamir and 239 Mitchell 2012), or recalls autobiographic positive memories (Speer et al. 2014). 240 Interestingly, individual differences in the striatal BOLD signals associated with the 241 consumption of such rewards have been shown to be very important in understanding 242 questions of human behavior and health that can be studied with fMRI. For instance, 243 striatal responses to evaluation of the self from others has been linked with pubertal status 244 and age (Jankowski et al. 2014), while simple responses to monetary gains and losses in the 245 striatum correlated positively with the sustainment of real-world positive emotions (Heller 246 et al. 2015) and negatively with early life stress such as emotional neglect (Hanson et al. 247 2015b). Taken together, these findings highlight the contribution of using fMRI to explore 248 reward-related processing in the human brain and links to behavior and health outcomes.  249 
Reward-related learning 250  The observations of the striatum responding to stimuli that predict rewarding 251 outcomes support a prominent role for striatal circuits in reward-based learning. Indeed, 252 the striatum has been implicated in a variety of learning studies involving cues that predict 253 reward (e.g., O'Doherty et al. 2004) to probabilistic reinforcement learning tasks where 254 feedback that allows for correction of behavior is presented, both in fMRI studies (e.g., 255 Dickerson et al. 2011) and in studies with Parkinson’s Disease patients, who have 256 compromised function in the basal ganglia (e.g., Shohamy et al. 2004).  257 
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An influential theory of reward-based learning has been the prediction error 258 hypothesis, which stems from theories of how errors can shape associative connections 259 (Rescorla and Wagner 1972) and temporal-difference reinforcement learning models 260 (Sutton and Barto 1981). Specifically, this hypothesis posits that the neural circuitry of 261 reward has the ability to update the expectation of future rewards and subsequently allow 262 for the adaptation of behavior (Schultz 2002).  263 A prediction error can be characterized as the calculation of whether a reward is 264 better or worse than expected (Glimcher 2011). A positive prediction error is generated 265 when an unexpected reward occurs, leading to an increase in phasic firing of dopaminergic 266 cells in the midbrain (Bayer and Glimcher 2005; Schultz et al. 1997). In contrast, a negative 267 prediction error is recorded when an expected reward fails to occur. Although there is 268 some debate whether the tonic firing rate of dopamine neurons makes it difficult to encode 269 a negative prediction error (Bayer and Glimcher 2005), there is nonetheless depression of 270 dopaminergic firing during the omission of an expected reward (Schultz et al. 1997). Both 271 positive and negative prediction error signals are correlated to reward-evoked dopamine 272 release onto the ventral striatum (Hart et al. 2014). These dopamine neurons show 273 sensitivity to the temporal aspect of reward delivery, which correspond to a key feature of 274 the prediction error signal—a temporal learning element that allows for predictions about 275 future rewards to be formulated and updated (Hollerman and Schultz 1998; Kobayashi and 276 Schultz 2008; Roesch et al. 2007). Collectively, these findings and others point to dopamine 277 a key neural signal involved in signaling prediction errors.  278 In humans, a few fMRI studies have also reported dopaminergic midbrain activation 279 during the generation of reward prediction errors (D'Ardenne et al. 2008; D’Ardenne et al. 280 2013). However, most have found evidence of a reward prediction signal in the striatum 281 (for review see Garrison et al. 2013). Some of the first observations of this involved simple 282 comparisons of unexpected juice delivery (positive prediction error) and omission 283 (negative prediction error), which evoked activation in dorsal (McClure et al. 2003; 284 O'Doherty et al. 2004) and ventral (Berns et al. 2001; Gläscher et al. 2010; O'Doherty et al. 285 2003) striatum. These were soon followed by other studies demonstrating how such 286 learning signals in the striatum could correlate with efficacious learning and performance 287 (e.g., Schönberg et al. 2007).  288 
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In parallel with the reward prediction error hypothesis, reward-based 289 reinforcement learning has also been demonstrated to involve two dissociable but related 290 processes: one that encodes response-outcome associations to govern goal-directed 291 behaviors, and the other that characterizes stimulus-response association to drive habitual 292 behaviors (Balleine and O'Doherty 2010). Concurrent with studies in rodents, these two 293 processes have been shown to also involve the human striatum (for review see Dolan and 294 Dayan 2013). To further illustrate how the striatum encodes habitual and goal-directed 295 action selection, investigators have utilized computational models to capture the 296 performance of these behaviors. For instance, a model-free approach is contingent upon 297 the interaction between the learner and the reward stimulus to update the reward cue 298 values through trial and error while reinforcing successful actions in a habitual manner 299 (Balleine et al. 2008; Rangel et al. 2008). This approach supports neurophysiological data 300 from dopamine (Bayer and Glimcher 2005; Schultz et al. 1997) and striatal neurons 301 (Oyama et al. 2010; Stalnaker et al. 2012) and BOLD signal from the striatum (Garrison et 302 al. 2013), hence drawing a parallel with the prediction error hypothesis. On the contrary, a 303 model-based learning scheme encompasses a more flexible way of incorporating striatal 304 prediction error signals into the calculation of value to inform goal-directed decision 305 making (Dayan and Berridge 2014). This approach takes into account additional 306 information about the expected reward, such as sensory attributes or associated costs (Doll 307 et al. 2012), to allow the learner to form a “state-dependent” prediction error that 308 encompasses the surrounding environment in order to drive goal-directed reward-309 maximizing actions (Gläscher et al. 2010). This state prediction error is dependent on not 310 only the striatum, but also significant contributions from several cortical areas such as 311 lateral prefrontal cortex (Gläscher et al. 2010).  312 For both model-free and model-based approaches, the striatum might very well be 313 the site where these two approaches are integrated to facilitate reward-based learning 314 (Daw et al. 2011; Wunderlich et al. 2012), yet the underlying mechanism of how the 315 striatum(and its distinct subsections) encodes reward prediction error has not been fully 316 resolved (e.g., see study by Stenner et al. 2015). A recent multimodal study employing both 317 PET and fMRI reported that dopamine level in the ventral striatum is responsible for 318 regulating the balance between model-free and model-based control on reward-related 319 
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behavior (Deserno et al. 2015), further suggesting that the importance of dopaminergic 320 modulation on the striatum cannot be discounted in either learning mechanism.  321 In short, these fMRI-based learning models demonstrate that the neural mechanism 322 underpinning reward processing relies on diverse brain regions that interact with the 323 striatum. Further progress in understanding how this reward-processing neural circuit 324 encodes reward-related functions in humans will be contingent upon capitalizing on the 325 many advantages that fMRI supplies, which will be scrutinized in subsequent sections.  326 
The Promise of fMRI in Advancing Models of Reward Processing  327 As previously discussed, fMRI is a noninvasive way to study the human brain that 328 provides us with correlative measurements of neural activity to allow for inferences in 329 various affective and cognitive processes. We have focused thus far on how fMRI has 330 confirmed prior findings from non-human studies and extended the knowledge to 331 behaviors typically observed in humans. In this section, we now discuss advantages of a 332 neuroimaging approach that have the potential to significantly advance models of reward 333 processing.   334 
Individual Differences 335 Due to its relative ease in application, fMRI studies have the potential to utilize 336 relative large samples of subjects. Researchers can exploit these large samples by relating 337 variation in brain structure and function to variation in behavior across individuals (Braver 338 et al. 2010; Yarkoni and Braver 2010). While this approach can be problematic in 339 underpowered studies (Yarkoni 2009), it provides a unique opportunity to identify 340 candidate mechanisms that contribute to a range of psychological constructs (Braver et al. 341 2010; Hariri 2009). 342  Inter-individual variability is often discussed in terms of structural and behavioral 343 differences. Structural differences, which can be commonly detected using methods such as 344 voxel-based morphometry from anatomical MRI images (Ashburner and Friston 2000; 345 Good et al. 2002) and fractional anisotropy from diffusion tensor imaging (Jbabdi et al. 346 2015; Johansen-Berg and Behrens 2013), have been observed within both control 347 
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population and pathological subgroups (Barrós-Loscertales et al. 2011; Pantelis et al. 2005; 348 Thompson et al. 2001; Wright et al. 2014). These anatomical differences in grey matter 349 volume and white matter integrity have been linked to inter-individual behavioral 350 differences (Kanai and Rees 2011), which includes measures such as reaction time (Jensen 351 1992), variable trait sensitivity to reward (Van den Berg et al. 2015) and working memory 352 (Just and Carpenter 1992).  353 The link between neural anatomy and behavioral manifestation can be bridged by 354 the functional inter-individual variability, which stems from differences in neural 355 responses recorded by fMRI. For example, fMRI studies looking at anhedonia, defined as 356 the impaired capacity to experience pleasure (Treadway and Zald 2013), have found that 357 increasing trait anhedonia not only correlated with reduced NAcc and caudate volume but 358 also with decreasing NAcc response to rewarding outcomes (Harvey et al. 2007; Wacker et 359 al. 2009). In the same vein, fMRI studies investigating trait measures such as sensitivity to 360 reward (Davis et al. 2004; Franken and Muris 2005) and behavioral indexes such as 361 learning aptitude have been reported to correlate with striatal activation in response to 362 reward anticipation (Beaver et al. 2006; Carter et al. 2009) and reward outcomes 363 (Rieckmann et al. 2010; Schönberg et al. 2007). In addition, responses in striatum are 364 predictive of individual differences in relative motivation to obtain different rewards 365 (Clithero et al. 2011) and differences in strategic preferences (Venkatraman et al. 2009). 366 These findings have been extended to patient populations where trait impulsivity 367 (Chamorro et al. 2012; Cloninger et al. 1994) correlated with hyporesponsiveness in the 368 ventral striatum during reward anticipation in both individuals with attention-369 deficit/hyperactivity disorder (Plichta and Scheres 2014) and detoxified alcoholics (Beck et 370 al. 2009). Taken together, these findings suggest that inter-individual behavioral variability 371 to rewards is intricately tied to variations in striatum neural function.   372 These fMRI observations provided new translational opportunities to extend these 373 findings to patient populations to predict susceptibility to psychopathologies. Linking 374 behavioral differences with neural functional differences has major implications on the 375 diagnosis of many psychopathologies and their individualized treatments. One example is a 376 study by Telzer and colleagues (2014) where ventral striatal activation in adolescents 377 exhibiting greater prosocial behaviors (e.g., donate money to family members) predicted 378 
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longitudinal declines in depressive symptoms. In contrast, ventral striatal activation in 379 adolescents who engaged in more selfish and risky reward-seeking behaviors predicted 380 longitudinal increases in depressive symptoms (Telzer et al. 2014). Yet another example of 381 how behavioral differences is associated with neural functional differences in 382 psychopathologies is shown by Hanson and colleagues (2015a) who demonstrated that 383 early life stress during childhood and adolescence, which leads to increased anxiety and 384 depression (Norman et al. 2012), predicted diminished reward-related ventral striatal 385 activity in adulthood. Collectively, these studies highlight how fMRI can be used to 386 understand variation across individuals, which can be precursors of psychopathological 387 conditions.  388 
Brain Connectivity and Functional Integration 389 Much of the work that was discussed in the preceding sections is predicated on the 390 principle of functional segregation, which relates functions (e.g., reward-related) to 391 populations of neurons or single brain regions (e.g., striatum; Friston 2005; Raichle 2003). 392 Yet, given the diverse anatomical inputs to each brain region, there can be multiple 393 functions associated with such regions, making it difficult to understand how specific brain 394 regions contribute to behavior and individual differences (Friston 2005; Park and Friston 395 2013). Addressing this issue rests with our ability to quantify the interactions and 396 connectivity between brain regions, a principle known as functional integration (Friston 397 2009). Characterizing functional integration thus requires simultaneous measurements of 398 responses from multiple brain regions—a core feature of neuroimaging studies. Indeed, 399 one of the earliest neuroimaging studies reported functional connectivity (e.g., statistical 400 dependencies or correlations) between homologous cortical areas (Biswal et al. 1995). 401 More recent studies employing functional connectivity have provided remarkable insights 402 into the large-scale network architecture of the brain (Beckmann et al. 2005; Smith et al. 403 2009). These networks span multiple regions and are recapitulated across species. For 404 example, the default-mode network—which includes medial portions of the prefrontal 405 cortex, posterior cingulate cortex, and lateral parts parietal cortex (Raichle et al. 2001)—406 has been reported in rodents (Lu et al. 2012) and monkeys (Vincent et al. 2007). The 407 ubiquity of large-scale networks has sparked several studies examining their functional 408 
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significance and impact on behavior. These studies have demonstrated that functional 409 connectivity with networks is associated with phenotypic variation (Ingalhalikar et al. 410 2014; Smith et al. 2014b) and behavioral variation (Cole et al. 2010; Smith et al. 2015) 411 across individuals. In addition, functional connectivity with networks is tied to 412 psychopathology, particularly depression (Berman et al. 2011) and schizophrenia (Manoliu 413 et al. 2014). These studies highlight how neuroimaging can leverage functional connectivity 414 to gain insight into the organization and functional significance of neural networks.  415 Beyond examining large-scale neural networks, functional connectivity has also 416 been applied to the striatum in an effort to characterize connections with the reward 417 circuit. For example, a landmark neuroimaging study with data from 1000 participants 418 utilized functional connectivity to reveal five striatal zones linked to sensorimotor, 419 premotor, limbic, and two association networks (Choi et al. 2012)—thus providing an in 420 
vivo characterization of careful tract-tracing studies performed in monkeys (Haber 2003). 421 Recent neuroimaging work has added to these observations by quantifying how distinct 422 cortical regions (e.g., orbitofrontal, dorsolateral, and parietal cortices) converge on similar 423 parts of the striatum (Jarbo and Verstynen 2015), supporting the hub-like organization of 424 striatal anatomical projections (Averbeck et al. 2014). Although corticostriatal interactions 425 are important for reward processing, the striatum also interacts with midbrain nuclei, 426 namely the substantia nigra and ventral tegmental area (Haber and Knutson 2010). In 427 accordance, a recent neuroimaging study developed a probabilistic atlas of the substantia 428 nigra and ventral tegmental area, allowing the authors to identify distinct patterns of 429 functional connectivity with the striatum and cortical regions (Murty et al. 2014). The 430 functional connections with the striatum have been exploited in a host of other studies, 431 with several groups reporting disrupted corticostriatal interactions in social anxiety 432 disorder (Manning et al. 2015), adolescent depression and anhedonia (Gabbay et al. 2013), 433 and major depression and positive affect (Heller et al. 2013). Together, these observations 434 reveal the interconnected nature of the striatum and underscore the importance of 435 examining functional connectivity with the striatum.  436 Yet, neurophysiologists have long recognized that functional connectivity suffers 437 from critical limitations that preclude insight into neuronal coupling (Gerstein and Perkel 438 1969). Correlations between regions and variations in those correlations may be 439 
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epiphenomenal, stemming from factors that are unrelated to neuronal coupling such as 440 changes in another connection, observational noise, or neuronal fluctuations (Friston 441 2011). To ameliorate these issues, neuroscientists have developed computational 442 approaches that estimate effective connectivity (Friston 2011; Friston et al. 1997; Valdes-443 Sosa et al. 2011), which has revealed key insights into how interactions with the striatum 444 shape reward processing. Unlike functional connectivity, studies using effective 445 connectivity quantify how one region contributes to the observed signal within another 446 region according to a specific psychological context. These studies have broadened our 447 understanding of how the striatum and its interconnected regions shape reward 448 processing. For example, Kahnt and colleagues (2009) reported that, when participants 449 computed reward prediction errors, dorsal striatum and ventral striatum were connected 450 to the substantia nigra and ventral tegmental area, respectively. Strikingly, the contribution 451 of dorsal striatum to the observed signal within substantia nigra predicted the impact of 452 different reinforcement types on subsequent behavior (Kahnt et al. 2009).  453 Other work using effective connectivity has revealed the interplay between different 454 neural structures and striatal systems during reward processing. For instance, some 455 studies have demonstrated that stimulus generalization during learning is mediated by 456 striatal contributions to the hippocampal response (Kahnt et al. 2012; Wimmer et al. 2012). 457 Studies using effective connectivity have also shown that hippocampal contributions to 458 striatal responses play a role in value-based decision making (Wimmer and Shohamy 459 2012) and episodic memory encoding (Wimmer et al. 2014). Recent work has built on 460 these observations by revealing how acute stress exacerbates ventromedial prefrontal 461 contributions to the striatum (Maier et al. 2015) and striatal contributions to the amygdala 462 (Admon et al. 2015). Although these studies highlight key patterns of effective connectivity 463 with the striatum, we emphasize that these relationships should not be interpreted as 464 causal; such inferences are difficult within fMRI (Ramsey et al. 2010) and likely require 465 causal modeling approaches (Friston et al. 2003) combined with faster imaging protocols 466 (Feinberg et al. 2010). 467 These studies underscore the importance of using fMRI to investigate brain 468 connectivity and functional integration—concepts that are central to our understanding of 469 how the striatum contributes to reward processing. We believe that future work has the 470 
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potential to integrate effective and functional connectivity with structural connectivity. 471 Indeed, structural connectivity with the striatum predicts personality characteristics 472 (Cohen et al. 2009), such as recent observations of dissociable fiber tracts leading to the 473 striatum being associated with individual differences in temporal discounting (van den Bos 474 et al. 2014). These findings raise important new questions regarding the convergence and 475 divergence of various forms of brain connectivity (Adachi et al. 2012; Honey et al. 2010). 476 Answering these questions will further elucidate the role of the striatum as part of a larger 477 and dynamic reward circuit. 478 
Multimodal Approach Using fMRI 479  When used in isolation, fMRI—like all measurement techniques (e.g., single-unit 480 recordings)—are inherently correlational and descriptive (Rorden and Karnath 2004; 481 Smith and Clithero 2009). This limitation can be partially overcome with the application of 482 multimodal approaches—combining cellular-based techniques (e.g., neurophysiological 483 recordings) and neurotransmitter-based techniques (e.g., PET) with fMRI—to inform on 484 the neural basis of fMRI-measured brain activity. The integration across modalities is 485 gaining traction in the study of reward processing in particular. For example, researchers 486 have been relating fMRI findings to PET results in both meta-analysis and empirical studies 487 to investigate how striatal BOLD signal is associated with dopamine release during reward-488 related behavior (Heinz et al. 2014; Judenhofer et al. 2008; Schott et al. 2008), thereby 489 informing the underlying neuronal basis of the hemodynamic response. Efforts have also 490 been expended to combine neurophysiological methods with fMRI in an attempt to link 491 neural hemodynamic responses (fMRI) with the brain’s canonical electrophysiological 492 responses (Bland et al. 2011; Lee 2012). For example, simultaneous application of 493 electroencephalography and fMRI demonstrated that the event-related potential signal 494 correlated with the BOLD signals in the ventral striatum during the delivery of rewarding 495 outcomes (Carlson et al. 2014; Carlson et al. 2011; Foti et al. 2014), suggesting a 496 convergence of neurophysiological and hemodynamic signals. In addition, one recent study 497 successfully applied optogenetics with fMRI in an animal model to characterize how 498 stimulation of the VTA produced activation in the ventral striatum that shaped reward-499 related behavior (Ferenczi et al. 2016), providing further insights to understand the 500 
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discrepancies (e.g., temporal resolution and cellular basis) between hemodynamic and 501 neurophysiological measures. Collectively, studies integrating fMRI with other tools not 502 only endows us with a deeper cellular-level understanding of the hemodynamic signal in 503 fMRI (Goense and Logothetis 2008; Hayden and Platt 2011; Heeger and Ress 2002; 504 Logothetis et al. 2001), but they also attribute fMRI findings in reward processing with 505 potential cellular explanations. 506 Translational models of reward processing will ultimately require multimodal 507 approaches that complement the strengths of fMRI, without compromising any of its 508 inherent advantages (e.g., widespread noninvasive application in the human population). 509 Such multimodal approaches call for the inclusion of noninvasive brain stimulation tools 510 (e.g., transcranial magnetic stimulation [TMS], transcranial electrical stimulation [tES]) to 511 task-based fMRI investigations (Poldrack and Farah 2015). This conjunction permits the 512 transient manipulation of neural activity during task conditions to allow researchers to 513 causally link brain stimulation to fMRI-measured neural alterations and resulting 514 behavioral changes (Driver et al. 2009). The concurrent use of TMS and tES with fMRI has 515 received recent attention in the cognitive neuroscience community (Antal et al. 2011; 516 Blankenburg et al. 2008; Jang et al. 2009; Rushworth et al. 2002; Sack et al. 2007). 517 Specifically, one recent study have successfully implemented transcranial alternating 518 current stimulation (tACS), a form of temporally-precise tES (Helfrich et al. 2014), to 519 demonstrate that intact frontal-parietal connectivity is necessary for value-based decision 520 making in humans (Polanía et al. 2015). Despite the relative success of such TMS/tES-521 induced neural stimulation, there are pre-existing hurdles left to overcome such as the 522 regional specificity of stimulation (Paulus 2011; Walsh and Cowey 2000). Nevertheless, the 523 co-application of TMS/tES and fMRI is promising because it provides a means to causally 524 link context-dependent neural activity with behavior (Camprodon and Halko 2014; Saiote 525 et al. 2013).  526 Extending these multimodal approaches to study reward processing in humans 527 remains challenging. For example, noninvasive brain stimulation approaches (e.g., tES) 528 cannot directly (or selectively) access deep-brain structures like the striatum (Wagner et 529 al. 2007). In contrast, invasive brain stimulation techniques (e.g., deep brain stimulation) 530 that can access the striatum are often too invasive to be extensively applied in human 531 



JN-00333-2015                                                                                                        Wang, Smith, Delgado    

Page 20 of 49 

participants. Therefore, one potential remedy that noninvasive multimodal studies in 532 humans can exploit is to capitalize on the functional integration in the reward circuit to 533 target the striatum and other deep-brain structures indirectly via their cortical 534 connections. Application of tES to the prefrontal cortex, for example, alters connectivity 535 with reward regions such as ventral tegmental area (Chib et al. 2013) and striatum 536 (Polanía et al. 2012). Similar work have also demonstrated that tES administered to 537 prefrontal areas including dorsolateral prefrontal cortex implicates reward-related 538 behaviors such as risk-taking (Sela et al. 2012), probabilistic learning (Turi et al. 2015), and 539 social perception of unfair rewards (Knoch et al. 2008). The next step for these tES studies 540 is to employ fMRI simultaneously with cortical brain stimulation to assess the responses of 541 the striatum and other neural regions, so as to inform on the functional integration in the 542 reward circuit. These types of multimodal studies will provide an exciting opportunity to 543 expand our knowledge on reward processing within the human brain, potentially providing 544 the gateway to developing brain-stimulation-based therapeutic interventions for a host of 545 psychopathologies. 546 
Conclusions, Limitations, and Future Considerations 547 With the widespread application of fMRI, influential non-human animal findings on 548 the role of the striatum in reward processing have been successfully corroborated in both 549 healthy and patient human populations. Many fMRI studies have also broadened the 550 understanding of reward processing in the striatum to human attributes such as distinctly 551 human incentives (e.g., money) and social and environmental contexts more representative 552 of human society. As fMRI matures into a powerful cognitive neuroscience tool, increased 553 effort has been expended to use fMRI to investigate individual differences in neural 554 functions, which can potentially explain the link between behavioral variability and 555 susceptibility to psychopathologies. Moreover, greater emphasis on brain connectivity and 556 functional integration may help refine existing neural models of reward processing. Brain 557 connectivity findings could potentially be combined with noninvasive brain stimulation to 558 draw causal inferences regarding the mechanistic links between corticostriatal pathways 559 and reward. Collectively, these advancements in applying fMRI (Fig. 4) promise 560 
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translational opportunities that can inform on the diagnostic and therapeutic insights of 561 many psychopathologies. 562  Nevertheless, there are limitations on what fMRI can accomplish for translational 563 research. One notable limitation is that individual differences studies require a larger 564 sample than those typically recruited for fMRI experiments (Button et al. 2013; Yarkoni et 565 al. 2011). Further, variables within these large samples may interact (e.g., age and race). 566 The development of a population-based atlas can help mitigate this concern as it aims to 567 capture inter-individual variability and map functional cortical organization that can be 568 broadly applied in individuals across different groups (Wang et al. 2015a). Such continued 569 future efforts to maximize the exploration of individual differences will play an important 570 role in explaining behavioral variability that inform clinical preventive and diagnostic 571 applications (Poldrack and Farah 2015).  572 Another potential source of limitation of applying fMRI to translational research is 573 the difficulty of some fMRI-based functional integration analysis in drawing causal 574 inferences on neural connectivity. Without the capability to demonstrate directionality in 575 neural connectivity, it is challenging to develop effective target-specific treatment and 576 preventive measures. This barrier has been partially overcome with dynamic causal 577 modeling, which was shown to be reliable in making causal interpretations (Smith et al. 578 2011). Yet another shortcoming in the current fMRI literature is the flexibility in data 579 analysis procedures, with preprocessing and analytical options rivaling the number of fMRI 580 studies (Carp 2012). The practice of standardizing experimental reporting guidelines in 581 journal publications is gaining traction in the field (Poldrack et al. 2008), which will yield 582 greater transparency in both experimental design and analytic approaches as well as 583 improve the reproducibility of fMRI findings (Poldrack and Poline 2015).  584  Despite these limitations, fMRI has generated some interesting directions that will 585 help shape future research on cognitive and affective processes such as reward processing.  586 First, fMRI studies have began to explore the neural basis of many psychological constructs 587 that are inherent to the human reward processing mechanism. For example, the loss of 588 voluntary control in decision making (Haggard 2008), which is pertinent to many 589 maladaptive reward approach and consummatory behaviors (Bechara 2005; Volkow et al. 590 2011), has been studied with presence and absence of choices (Ernst et al. 2004; Leotti and 591 
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Delgado 2011), habitual reward-based learning (Tricomi et al. 2009), controllable and 592 uncontrollable setbacks to goal-directed reward-seeking behavior (Bhanji and Delgado 593 2014), and compulsive reward-seeking and reward-taking behavior in addiction (e.g., food: 594 Gearhardt et al. 2011; cocaine: Tomasi et al. 2015). Future studies will benefit from 595 examining whether individual differences in behavioral variability (e.g., impulsivity) is 596 predictive of the loss of voluntary control and how the neural connectivity is altered during 597 these maladaptive decision making using fMRI-centric multimodal approaches. Further, 598 future studies can also take advantage of brain connectivity to clarify and augment 599 knowledge about how neural circuits, beyond a particular region of interest (ROI), may 600 contribute to a psychological process. For instance, recent work has leveraged brain 601 connectivity to distinguish representations tied to distinct properties of reward, 602 particularly those related to affect (e.g., pleasure) and those related to information (e.g., 603 reinforcement) to show that these properties are not distinguishable at the ROI level, but 604 instead can emerge as a function of connectivity between corticostriatal circuits (Smith et 605 al. In Press).  606 Second, the application of computational models to fMRI, such as those that gave 607 rise to model-free and model-based learning mechanisms, have opened the door for new 608 translational opportunities (Montague et al. 2012; Stephan et al. 2015; Wang and Krystal 609 2014). These new opportunities will revolve around using neural computational 610 mechanisms to predict behavior and understand its adaptive consequences, which could 611 have both diagnostic and prognostic values. Perhaps more importantly, the successful 612 application of computational models may serve to bridge findings from diverse techniques 613 while connecting animal models with human data (Bornkessel-Schlesewsky et al. 2015; 614 Kepecs and Mainen 2012).  615 Third, improvements in fMRI acquisition (e.g., three-dimensional or multiplex EPI: 616 Feinberg et al. 2010; finer-resolution fMRI: Yacoub et al. 2015) may help elucidate 617 functional segregation within the striatum such as dissociating the functional role of NAcc 618 core and shell in the human brain, which is currently not well-characterized in humans 619 (Baliki et al. 2013). At present, there remains some technical obstacles to overcome for the 620 acquisition of excellent subcortical signals such as those within striatal subregions (Kaza et 621 al. 2011; Polanía et al. 2015). Nevertheless, the progress in refining fMRI technical 622 
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capabilities will greatly enhance the capacity to use fMRI to study functional dissociation 623 within smaller human subcortical subregions (e.g., striatum) while also improve the ability 624 to detect BOLD activation (Iranpour et al. 2015; Posse et al. 2012).  625 Although some scholars have questioned the utility of using neuroimaging to 626 understand behavioral phenomena (Gul and Pesendorfer 2008), we contend that 627 knowledge gained from neuroimaging studies can contribute to behavioral theories and 628 potentially even impact policy (Clithero et al. 2008; Levallois et al. 2012; Venkatraman 629 2013). This approach has been observed in some reward-related studies. For example, 630 neural estimates of reward have been used to optimize public goods allocation and solve 631 the pernicious problem of free riders (Krajbich et al. 2009), while a novel theory of 632 overbidding during auctions—e.g., loss contemplation, rather than risk aversion—was 633 developed and tested based on reward-related responses observed in the striatum 634 (Delgado et al. 2008). More recent studies have used neural data to access individual 635 preferences in the absence of choices (Smith et al. 2014a) and to adjudicate between 636 disparate theories of investor behavior (Frydman et al. 2014). These are just some 637 examples that illustrate how neuroimaging can inform our understanding of behavior and 638 policy.  639 Together, these new research avenues congregate on the fundamental notion that 640 fMRI is a crucial and promising tool to study cognitive and affective processing in humans. 641 Advancements in the study of these processes hinge on profiting from the advantages of 642 fMRI while simultaneously implementing complementary tools, such as brain stimulation, 643 to make causal inferences on neural functions and circuitry connectivity. This multimodal 644 approach will endow us with a deeper and more comprehensive understanding of 645 mechanistic underpinnings to these cognitive and affective processes and also provide the 646 translational basis for both therapeutic and preventive healthcare measures.   647 
    
 648 
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Figure Captions 649  
Figure 1: Proliferation of fMRI Studies in Reward Processing 650 The use of fMRI to study reward processing has been increasingly popular over the past 20 651 years. During this time, the number of publications on fMRI and reward has increased 652 quasi-exponentially. We note that the shown data were extracted from pubmed.gov on 653 March 27th, 2015 using the search term "(fMRI OR functional magnetic resonance imaging) 654 AND reward".  655  656 
Figure 2: Gains and Losses Modulate Activation in the Striatum 657 A) A popular approach to studying reward processing employs a card guessing task. In this 658 paradigm, subjects are presented with a card and asked to guess whether the number on 659 the card (range: 1-9) will be higher or lower than 5. If the subject guesses correctly, s/he 660 wins money. However, if the subject guesses incorrectly, s/he loses money. B) Contrasting 661 positive outcomes or win trials against negative outcomes or loss trials reveals activation 662 within the striatum. Here we focus on the nucleus accumbens (NAcc). C) Within the NAcc, 663 the responses to wins (depicted with parameter estimates) are higher than the responses 664 to losses. Figure used data from Fareri et al. (2012).  665  666 
Figure 3: Reward Processing and the Striatum 667 A) A large-scale meta-analysis of 506 neuroimaging studies indicates a selective association 668 between the term "reward" and striatal activation (Yarkoni et al. 2011). These 669 observations help illustrate the reliability of neuroimaging evidence in demonstrating the 670 involvement of the striatum in reward processing. B) Anatomical subdivisions of the 671 striatum in the human brain. These subdivisions include the putamen (blue), nucleus 672 accumbens (NAcc; green), and caudate (red). 673  674 
Figure 4: The Promise of fMRI in Understanding Reward Processing 675 Shown here is an anterior view of a translucent cortical surface for the right hemisphere. 676 Bilateral striatal surfaces are shown for the putamen (blue), nucleus accumbens (green), 677 and caudate (red). Our synthesis of the literature suggests that fMRI holds promise for 678 
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understanding individual differences and brain connectivity. In addition, multimodal 679 approaches that combine fMRI with other tools such as noninvasive brain stimulation may 680 reveal causal mechanisms that support reward processing. Brain surfaces were created 681 with Chris Rorden's Surf Ice software. 682                          
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