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There is considerable evidence that human economic decision-
making deviates from the predictions of expected utility theory
(EUT) and that human performance conforms to EUT in many
perceptual and motor decision tasks. It is possible that these results
reflect a real difference in decision-making in the 2 domains but it
is also possible that the observed discrepancy simply reflects
typical differences in experimental design. We developed a motor
task that is mathematically equivalent to choosing between lot-
teries and used it to compare how the same subject chose between
classical economic lotteries and the same lotteries presented in
equivalent motor form. In experiment 1, we found that subjects are
more risk seeking in deciding between motor lotteries. In experi-
ment 2, we used cumulative prospect theory to model choice and
separately estimated the probability weighting functions and the
value functions for each subject carrying out each task. We found
no patterned differences in how subjects represented outcome
value in the motor and the classical tasks. However, the probability
weighting functions for motor and classical tasks were markedly
and significantly different. Those for the classical task showed a
typical tendency to overweight small probabilities and under-
weight large probabilities, and those for the motor task showed
the opposite pattern of probability distortion. This outcome also
accounts for the increased risk-seeking observed in the motor tasks
of experiment 1. We conclude that the same subject distorts
probability, but not value, differently in making identical decisions
in motor and classical form.

expected utility theory � independence axiom � movement planning �
prospect theory � decision from experience

In everyday life, we face many decision problems with the same
formal structure. Rushing to class, for example, we may

consider crossing a busy street against the light. The decision to
cross or not to cross against the light can be represented by first
listing all of the possible outcomes O1, . . . ,On (late for class, run
over by a taxi, ticketed for jaywalking, etc). A decision to cross
the street effectively assigns probabilities p1,. . .,pn to the out-
comes, a decision not to cross assigns different probabilities
p�1, . . .,p�n. An economist would immediately recognize that we
are choosing between lotteries (p1,O1; . . . ;pn,On) and
(p�1,O1; . . . ;p�n,On).

Decision-making is typically modeled as a choice among
lotteries. A lottery consists of mutually exclusive outcomes
(O1, . . . ,On) that have corresponding probabilities of
occurrence(p1, . . .,pn), �i�1

n pi � 1. It is denoted by listing proba-
bility–outcome pairs (p1,O1; . . . ; pn,On). An example would be
a choice between (0.5,$10000; 0.5,$0) and (1,$4000); a 50:50
chance at $10000 or nothing versus a certain gain of $4000. If the
subject knows the probabilities as well as the outcomes, then he
is engaged in decision-making under risk (1). We will sometimes
omit the 0 outcome and its associated probability; the first lottery
in the example then becomes (0.5,$10000).

Recent research in perception and action indicate that per-
formance in many perceptual and motor decision tasks that are
formally equivalent to decisions under risk is remarkably close to

the performance expected of an ‘‘ideal’’ observer or mover that
maximizes expected utility (2–8). Observed performance in
making perceptual and motor decisions is in sharp contrast to
that found in decision-making under risk, where patterned
deviations from utility maximization have been repeatedly dem-
onstrated (9).

However, there are several important differences in experi-
mental design that could account for the discrepancy. Subjects
in previous perception and motor experiments made long series
of choices and accumulated winnings over the course of the
experiment. Economic decision-makers faced with series of
decisions spontaneously move closer to maximizing expected
utility in decision-making under risk (10–12). Furthermore, the
gain or loss associated with each trial in the motor tasks was small
and feedback was immediate. Studies of risky choice found that
subjects are closer to maximizing expected value for small stakes
(13, 14) and when subjects receive considerable feedback over
the course of the experiment (15). Consequently, we cannot
conclude from previous experiments that performance in deci-
sion-making under risk is different from performance in an
equivalent visual or motor task.

In this study, we conducted 2 experiments in which we
eliminated these differences in experimental design and directly
compared decision under risk with a precisely equivalent motor
task. In experiment 1, we paired a classical lottery task (16, 17)
intended to test for failures of the independence axiom of
expected utility theory (EUT) (18) with an equivalent motor
task. Each subject completed both the classical experiment and
its motor analogue, allowing us to directly compare performance
across task modalities within subject. In experiment 2, we
extended the first experiment to parametrically estimate and
compare the subjective transformation of both outcome value
and probability between economic and motor decision tasks in
the framework of cumulative prospect theory (CPT) (19). We
could then compare how each subject made use of probability
and value information in motor and classical tasks.

Experiment 1
The goal of experiment 1 is to compare economic decision-
making with an equivalent motor task and test the independence
axiom of EUT in both modalities. We will first describe how we
translate a lottery to an equivalent motor task and then introduce
the independence axiom of EUT and explain why we are testing it.

Construction of a Motor Lottery. On each trial in a rapid-pointing
task, the subject had only 700 ms to attempt to touch a target
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configuration on a touch screen with his/her index finger. Fig. 1A
illustrates a typical target configuration. Subjects received the
highest payoff O1 if they hit the yellow stripe, second highest
payoff O2 for hitting either of the same-sized blue regions
symmetrically placed around the yellow stripe, and 0 for hitting
anywhere else on the screen. Because the subjects had to
complete movements in a short period (700 ms), they were not
fully in control of the outcome of their planned movements. This
uncertainty in movement, referred to as motor uncertainty here,
has been proposed to arise from the accumulation of online
neuromuscular noise (20) or more recently, firing rate variability
during movement preparation (21). In Fig. 1B we superimposed
the movement endpoints from one of our subjects on the target
configuration. In past work we found that the endpoint distri-
bution was very close to an isotropic Gaussian (6–8), and in the
current experiment we verified that each subject’s end point
distribution was also close to an isotropic Gaussian and esti-
mated the single parameter � that characterized the Gaussian
separately for each subject (see Materials and Methods). The end
point distribution induces a probability distribution over the
possible outcomes (O1,O2,O) conditional on the subject’s motor
uncertainty. For this subject, the configuration shown was equiv-
alent to a lottery (0.27,O1; 0.6,O2; 0.13,0). To distinguish such a
lottery from the ‘‘classical’’ lottery, where probability informa-
tion is explicitly given, we refer to a lottery of this type as a
‘‘motor lottery.’’ Subjects were first trained to hit target config-
urations similar to the one we just described until their perfor-
mance had stabilized and we could reliably estimate �. We
emphasize that, during training, the subjects simply tried to hit
target configurations, a simple motor task; they did not choose
between motor lotteries as they would in the main experiment
(see Materials and Methods).

The Independence Axiom. The independence axiom specifies con-
straints on choice that any EUT decision-maker would exhibit.
Suppose that a subject consistently prefers the lottery
(0.33,$2500; 0.67,$0) to the lottery (0.34,$2400; 0.66,$0). This
choice would be explained in terms of EUT by postulating that

0.33U�$2500� � 0.34U�$2400� [1]

where U (�) denotes the subjective utility of each outcome (22).
Now, suppose we add a ‘‘common consequence’’ 0.66U($2400)
to both side of Eq. 1. Then we have the inequality

0.33U�$2500� � .66U�$2400� � U�$2400� [2]

consistent with a preference for the lottery (0.33,$2500;
0.66,$2400,0.01,$0) over receiving $2400 for sure. The indepen-
dence axiom is simply the claim that adding such a common
consequence should not alter preference. In experiments, how-
ever, subjects often violate this prediction (23–26). For the
example above, Kahneman and Tversky (24) reported that 83%
of the subjects chose (0.33,$2500; 0.67,$0) over (0.34,$2400;
0.66,$0). However, 82% of the subjects chose to receive $2400
‘‘for sure’’ over (0.33,$2500; 0.66,$2400,0.01,$0).

One prominent interpretation of the violation of the inde-
pendence axiom is that choosers distort probability information
when making decisions (24). For example, in prospect theory
(24), the probability weighting function was proposed to char-
acterize the transformation of objective probability information
to probability weight and used to explain such violations.

In experiment 1, we modified the common consequence
design of Wu and Gonzalez (16, 17) to examine violations of the
independence axiom of EUT in both classical and motor tasks.
Subjects in the common consequence task faced a series of
lottery pairs, in motor or classical form, and had to choose the
one they preferred in every trial (see Materials and Methods). A
schematic of the design is illustrated in Fig. 1C. The common
consequence task is appropriate for a first comparison between
decision-making in classical form and in motor form because one
critical difference between them is how probability information
is revealed. In the classical tasks, probability is explicitly given to
the chooser. In the motor task, probability is not explicitly given:
It is implicit in the subject’s own motor uncertainty.

Results. We first compared choice patterns between the classical
and the motor lottery tasks at the group level. We adopted the
terminology in Wu and Gonzalez (16, 17) in defining one lottery
in each pair as the ‘‘riskier’’ lottery and the other lottery as the
‘‘safer’’ lottery: The riskier lottery always had both the higher
probability of winning the highest monetary amount and also the
higher probability of winning nothing (See Materials and Meth-
ods for detail). We wish to emphasize that there are alternative
definitions of risk in the literature. For example, the variance of
the probability distribution over outcomes is often used to define
the level of risk for a lottery (26). In our design, the riskier lottery
in each rung always had greater variance than the safer lottery.

In Fig. 2A we plotted the mean frequency of choosing the
riskier lottery, fR (averaged across subjects) in the common
consequence tasks. We found that the subjects on average chose
the riskier lottery in the motor task more often than in the
classical task across all rungs (P � 0.05 for each rung). In general,
we found increased preference for the riskier lottery in the motor
condition as the overall chance of winning increased. Compared
with the motor tasks, subjects in the classical tasks tended to be
more averse to risk. They tended to choose the safer lottery at
rungs 1 and 2 and seemed to be indifferent between the riskier
and the safer lottery at rung 3 (P � 0.05), when the overall
probability of winning reached close to or above 90% for both
lotteries.

Our second analysis focused on violations of the independence
axiom in the two tasks. In Fig. 2B, we illustrate some possible
choice patterns of the experiment. On the horizontal axis we
plotted the rung of the ladder in the common consequence
design and on the vertical the frequency of choosing the riskier
lottery fR in each pair. If a subject’s performance is consistent
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Fig. 1. Construction of a motor lottery and task design. (A) A stimulus
configuration containing 2 non-zero monetary outcomes, O1 and O2, where
O1 � O2 � O. The subject earned O1 by hitting the yellow bar, O2 by hitting
either of the blue bars, and O if his/her movement endpoint fell elsewhere on
the touch screen. The subject had to complete the pointing movement in �700
ms to avoid a large penalty. (B) From one subject with motor uncertainty � �
6.57 mm, 623 movement endpoints were superimposed on the configuration.
For this subject, this configuration was equivalent to a lottery (0.27,O1; 0.6,O2;
0.13,O). (C) Common consequence task. The bottom rung was the pair R
(0.27,$24; 0.2,$20,0.53,0) and S (0.52,$20; 0.48,0). Each higher rung was con-
structed by adding a ‘‘common consequence’’ (0.2,$20) to both lotteries in the
rung below it. The lottery in each pair with the higher probability of winning
the highest amount ($24 in this example) and the zero outcome was desig-
nated as ‘‘riskier’’ (R), whereas the other lottery was designated as safer (S). If
the subject’s frequency of choosing the R lotteries is the same across rungs, his
performance is consistent with the independence axiom.
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with the independence axiom, then his probability of choosing
the riskier lottery will be independent of the rung of the ladder.
The 2 solid horizontal lines illustrate the possible performance
of 2 hypothetical subjects in the task—one tends to prefer the
riskier option, whereas the other tends to prefer the safer choice,
but both conform perfectly to the independence axiom. In
contrast, the dashed lines correspond to patterns of performance
violating the independence axiom: Subjects change from risky to
safe or vice versa as a function of rung.

To quantitatively examine violation of the independence
axiom, we computed the standard deviation of fR as an index of
failure (IF) of the independence axiom. For example, IF � 0
indicates that fR was constant across the rungs. The higher the
IF, the less consistent in preference a subject is across the rungs.

In Fig. 2C, for each subject we plotted the IF of the classical
tasks against the motor tasks. The error bars represent �1 SD
computed by an application of Efron’s bootstrap (27). If subjects
had lower IF in motor tasks, we would expect points to fall above
the identity line. Among 20 subjects, we found that half of the
subjects’ IFs were smaller in the motor task than in the classical
task, indicating that the independence axiom was violated to a
lesser extent in the motor task in those subjects. For the
remaining half, we found that 6 subjects showed greater violation
of the axiom in the motor condition, whereas 4 did not differ
between motor and classical. Although slightly more subjects
violated the axiom to a lesser extent in the motor tasks, it was not
conclusive that the subjects violated the axiom less in one task
over the other.

Taken together, our results are consistent with the claim that
subjects violated the independence axiom in both tasks to the
same extent.

It is possible that the choice pattern observed in motor tasks
reflected inaccurate estimates of the probabilities of hitting
target bars. For example, the risk-seeking choice observed in the
averaged subject’s data (Fig. 2 A) when the chance of winning
was high could be due to an overestimation of the probability of
hit. Therefore, we asked the subjects to estimate their probability
of hitting selected targets at the end of the decision-making
session. The averaged verbal estimates plotted as a function of
probability (Fig. 2D) fell near the identity line when the prob-
ability was between 0.2 and 0.9. We will return to this point in
Discussion.

To summarize, we found that the subjects exhibited different
choice patterns between motor lottery and economic lottery
tasks. When the probability was implicit in the subjects’ own
motor uncertainty, they tended to be more risk-seeking com-
pared with their choices in the economic task, for which prob-
ability information was explicitly provided. We found no evi-
dence that subjects were more prone to violate the independence
axiom in one task more than the other.

Experiment 2
Violations of the independence axiom are often attributed to
distortions of probability information (24). However, without
explicitly estimating probability distortion, we cannot attribute
differences in the choice patterns we observed in experiment 1
solely to different patterns of probability distortion. It is possible
that both the subjective desirability of outcomes and the distor-
tion of probability information contribute to the different pat-
terns we observed between classical economic lottery tasks and
motor lottery tasks.

In this experiment, we explicitly modeled and estimated the
subjective transformation of both outcomes and probability. We
asked the following question: Could the difference in subjects’
choice between motor and classical be attributed to different
patterns of use of probability information?

Estimating Model Parameters. We extended the lottery task design
in experiment 1 and parametrically estimated the distortion of
information about value and probability in the framework
of CPT (19). To keep our lottery task as simple as possible, all
of the lotteries had only 1 non-zero outcome. CPT, proposed by
Tversky and Kahneman (19) as a major upgrade of its prede-
cessor, prospect theory (24), is a popular descriptive model of
choice in psychology and behavioral economics. In CPT, both
the subjective desirability of outcomes and the distortion of
probability are modeled as transformations of objective quan-
tities. The subjective desirability of outcomes O1,…,On in lottery
(p1,O1;…;pn,On) is modeled by a value function with the follow-
ing form:

v�O� � �O�, O � 0
	�	O��, O � 0� . [3]

In the present context, we only consider O � 0. In Fig. 3A, we
plotted v(O) against O with several different values of �. It
should be clear that v(O) is concave when � � 1, and convex
when � � 1.

To model distortions of probability information, we used the
following 1-parameter probability weighting function taken from
Prelec (28):

w�p� � exp
	�	ln�p��	� , 0 � p � 1. [4]

A typical probability weighting function has an inverse S-shape,
which captures overweighting of small probabilities (typically

Fig. 2. Choice data in experiment 1. (A) Mean frequency (collapsed across
subjects) of choosing the risky lottery fR was plotted as a function of rung. (B)
Hypothetical choice patterns. The solid horizontal lines represent hypotheti-
cal patterns of frequencies that do not vary across rungs, consistent with the
independence axiom. The dashed lines correspond to patterns of choice that
violate the independence axiom. (C) Index of failure. For each subject, we
plotted IF of the classical tasks (IFc) against IF of the motor tasks (IFm). IF was
computed by taking the standard deviation of fR. The error bars correspond to
�1 SD computed by an application of Efron’s bootstrap (27). (D) Averaged
verbal estimates on the probability of hit (p̂) were plotted against estimates of
probabilities (p) based on subjects’ performance during training. The error
bars represent �1 SD of the subjects’ verbal estimates.
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when p � 0.35) and underweighting of moderate-to-large prob-
abilities. This shape has been consistently inferred from subjects’
choice data (16, 17, 19, 28). In Fig. 3B, we plotted possible values
of 	 in Eq. 4: When 	 � 1, w(p) exhibited the typical shape.
However, when 	 � 1, the distortion goes in the opposite
direction with underweighting of small probabilities and over-
weighting of moderate to large probabilities.

It should be noted that CPT is a rank-dependent model: The
outcome–probability pairs in the lottery are ranked according to
the outcome values. The cumulative prospect of a lottery is the
sum of the rank ordered value of each outcome v(O) weighted
by its decision weight. By definition, decision weight is not always
equivalent to the probability weight in this model except for the
most extreme outcome(s) (positive or negative). In this exper-
iment, however, all of the lotteries had only 1 non-zero outcome.
Hence, the decision weight of the non-zero outcome is indeed
the probability weight. This simpler lottery design avoided
possible complexities resulting from the rank-dependent as-
sumption.

The design and methods in experiment 2 were identical to
experiment 1 except that we expanded the range of both
outcome and probability in the lottery task so that we could
reliably extract the value function and the probability weighting
function for each subject and we changed the timing within trials
(see Materials and Methods for details). For the details of our
parameter estimation procedure, please see SI Materials and
Methods.

Results
In Fig. 4A, for each subject we plotted the estimate of the value
function parameter � in the motor task (�motor) against � in the
classical task (�classical). Each data point represents a single
subject. The error bars represent the interquartile range com-
puted through an application of Efron’s bootstrap method (27).
If the subjects did not differ in the value function between the
2 tasks, then the points should fall on or near the diagonal line.
We found that, in 10 of 14 subjects, �motor was not significantly
different from �classical (z test, p � 0.05). For the remaining 4
subjects, whose data points were not shown in the graph, 2
exhibited greater �motor (subjects N.M. and E.L.), whereas the
other 2 showed greater �classical (subjects J.Y. and I.L.). The
median (n � 14) of �motor � 0.5603 was identical to the median
of �classical � 0.5604. In brief, there is no significant difference
across subjects in the use of value information between the 2
tasks.

In Fig. 4 B and C, we plotted the estimated probability
weighting function w(p) for each subject in the classical task (Fig.
4B) and in the motor (Fig. 4C). Each curve represents 1 subject.
The dark, thick curve in each graph indicates the median w(p).
We found that most subjects in the classical task (11 of 14)
tended to exhibit the typical shape of the weighting function (	 �
1); most subjects overweighted small probabilities and under-
weighted moderate-to-large probabilities. The results in the
motor task were markedly different: only 3 subjects of 14 had a
value of 	 � 1; the remaining 11 of 14 showed the opposite
pattern (	 � 1), underweighting small probabilities and over-
weighting large. We tested whether the distribution of subjects
with 	 � 1 differed in the 2 tasks and found that they did
(Fisher’s exact test, p � 0.0070).

In the paper that attempted to formally address the relation
between subjects’ choice pattern and the curvature of the
probability weighting function, Wu and Gonzalez (16) proposed
that, assuming a concave value function, the concavity in w(p) is
associated with increased risk seeking, whereas convexity is
associated with increased risk aversion. Because most subjects’
value functions were concave (� � 1), the result that most
subjects’ w(p) were concave when probability was moderate to
large would predict increased risk-seeking in the motor task. In
fact, this prediction is consistent with the result in experiment 1
in the motor task given that the subjects showed increased
frequency of choosing the riskier option when the overall
probability of winning was from 0.5 to 0.9.

To summarize, in this experiment we found that, although
most subjects did not show significant differences in their
estimated value functions between the 2 tasks and there was no
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obvious pattern of difference across subjects, the probability
weighting functions observed in the 2 tasks were markedly
different. Although most subjects showed the typical shape of
the weighting function in the classical tasks, all but 3 of 14
subjects showed the opposite pattern of distortion in the motor
task. That is, when the probability was implicit in the subjects’
own motor uncertainty, subjects tended to underweight small
probabilities and overweight moderate-to-large probabilities.
The results serve as evidence to parametrically reveal, on a
subject-by-subject basis, differences in the probability weighting
function that are task-dependent and that are subject to how
probability information is revealed to the chooser.

In both of the experiments reported here, EUT failed to
predict performance in both motor and classical decision-
making tasks, though for different reasons. Although expected
utility maximization is often treated as a benchmark against
which performance is measured in experimental investigations
of perceptual and motor performance, there are alternative
systems of preferences over lotteries that are complete and
transitive but do not lead to maximization of expected utility
(29). In evaluating human performance, researchers should
consider the possibility that in focusing on EUT as a benchmark
for human performance we have mistaken the actual goals
implicit in human decision-making.

Discussion
In modern decision research, it has been systematically and
repeatedly demonstrated that human choice in economic deci-
sion tasks deviates from the predictions of EUT (9, 23–26).
Recently, results from various perceptual and motor decision
tasks suggested that humans come close to maximizing expected
utility in their performance (see ref. 30 for review). What is
intriguing is that many of these tasks possessed lottery structures
and hence are a form of decision under risk. One critical
difference between the perceptual or motor tasks and the
classical lottery tasks used in decision under risk was how
probability information was revealed to the chooser. In the
classical economic tasks, information about probability was
stated explicitly to the subjects. In the perceptual or motor tasks,
the probability information was implicit in the subjects’ percep-
tual or motor uncertainty. However, because of differences in
experimental design, none of the studies to date can be consid-
ered as a valid comparison between economic decision under
risk and motor or perceptual decision under risk.

In this study we investigated how economic decision-making
differed from motor decision making by developing a method to
translate the classical economic tasks to an equivalent motor
task. In experiment 1, we examined the violation of the inde-
pendence axiom of EUT, a well-established finding in human
economic decision-making, in economic tasks and in motor tasks
with equivalent design and on a subject-by-subject basis. Our
results revealed that subjects’ choice pattern differed between
the motor and the economic tasks: Subjects in the motor task
tended to choose the riskier option more often and, as the overall
probability of winning increased, showed more preference to-
ward the riskier option (Fig. 2 A). Additionally, the indepen-
dence axiom was violated to roughly the same extent in both
tasks by most subjects.

Based on the results in experiment 1, it is not clear whether we
could attribute different choice patterns between classical and
motor tasks solely to possible differences in the way probability
information is distorted. To explicitly test this hypothesis, in
experiment 2 we extended the concept of experiment 1 but
expanded the range of outcome values and probabilities so that
we could parametrically estimate the subjective transformation
of both outcome and probability within the framework of CPT.

We found no evidence of a patterned difference in subjects’
value functions across the 2 tasks. However, the shape of the

probability weighting function was markedly different. Subjects
in the classical economic task exhibited the typical shape of the
weighting function: They tended to overweight small probabil-
ities and underweight moderate-to-large probabilities. On the
other hand, the same subjects showed the exact opposite pattern
of distortion in the motor task: They tended to underweight
small probabilities and overweight moderate to large probabil-
ities. As reported in the discussion of Fig. 2D, subjects had
accurate estimates of their probability of success in the motor
task and consequently the differences in probability weighting
functions found in experiment 2 correspond to an actual differ-
ence in the use of probability information.

Our results are closely connected to an area of research that
investigates how experience in decision making could affect
choice and the use of information. It has been pointed out that
experience with payoff distribution of different options could
alter choice (12, 15, 25, 26), which can be attributed to changes
in the shape of the probability weighting function (25). It is now
widely recognized that subjects perceive outcomes and proba-
bility differently when engaged in an experience-based decision
compared with tasks for which information about outcome and
probability are given explicitly to the subjects (25, 26). In field
experiments, List and colleagues (31–33) showed how experi-
ences in the marketplace could eliminate choice anomalies (e.g.,
the endowment effect) typically observed in inexperienced sub-
jects. Our results tie closely to both lines of research to the extent
that motor decision-making is a kind of experience-based deci-
sion-making. The subjects acquired the knowledge about prob-
ability through repeatedly performing a rapid-pointing task
during the initial motor-training session (see Materials and
Methods). In essence, probability is implicit in the subjects’
experience in the pointing task during training. What we found
in experiment 2 is that when probability information is implicit
in the subjects’ motor experience, the typical probability weight-
ing function is the mirror reflection of the typical shape that has
been shown in many previous studies for which probability was
explicitly provided to the subjects.

Given that probability weighting functions change with task, it
is natural to ask what determines the probability weighting
function in any particular task. Certainly novelty is a possible
factor but so is, for example, possible beliefs about locus of
control: If subjects believe they can control their motor uncer-
tainty, for example, they may be willing to accept what is
objectively greater risk even though we know that they cannot,
based on measured performance in a large number of studies. A
complete theory of decision-making requires a characterization
of the effects of experience and task modality on choice and how
information about outcome value and probability are used when
making decisions.

Materials and Methods
Subjects and Instructions. Twenty subjects (9 male, 11 female) in experiment 1
and 14 subjects (7 male, 7 female) in experiment 2, all from the Department
of Psychology and Center for Neural Science at New York University, partici-
pated in the experiments. All subjects gave informed consent and were paid
$12/h for participation plus a possible bonus (see ‘‘Lottery execution’’ in
Procedure for details). All were unaware of the purpose of the experiment.

Procedure. The procedure in both experiments was identical. There were 2
sessions in the experiment, the motor-training session and the decision-
making session. We wish to emphasize that during motor-training, the sub-
jects did not know about the later decision making session.
Motor-training session. Subjects learned to hit single target configurations
similar to that shown in Fig. 1A. The training session consisted of 320 training
trials that took �35–45 min to finish. There were 2 types of target configu-
rations: a single yellow rectangular region (single-region configuration) or a
more complicated region with 2 equally sized blue bars displayed symmetri-
cally on the side of a yellow bar (multiregion configuration). In experiment 1,
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the subjects faced both kinds of configurations. In experiment 2, they faced
only the single rectangular configuration.

In every trial, a target configuration was presented on a touch screen and
subjects had only 700 ms to hit it. If she/he did not hit the screen within 700 ms
after target presentation, she/he would lose 700 points. Hitting the central
yellow stripe would earn a reward of 100 points ($0.05), whereas 50 points was
the reward for hitting the blue region.

The goal of this session was, for the experimenter, to check whether the
subjects’ performance reached an asymptotic level so that we could reliably
estimate his/her unique motor uncertainty. Typically, subjects’ endpoint dis-
tributions in this task were very close to isotropic bivariate Gaussian as found
previously (6–8), and we characterized motor uncertainty by estimating the
SD (�) of the distribution separately for each subject.
Decision-making session. Subjects returned the following day after training to
participate in the decision-making session. There were 2 types of tasks, an
economic lottery task and a motor lottery task. In the economic task, the
subjects chose between pairs of lotteries for which information about out-
come and probability were explicitly given. The motor lottery task was created
uniquely for each subject based on his/her motor uncertainty (�) such that it
is mathematically equivalent to the economic lottery task. Fig. 1A illustrates
a possible motor lottery. Notice that in a motor lottery, information about
probability was implicit in the subjects’ own �. As in the economic lottery task,
in the motor lottery task the subjects were also instructed to choose the motor
lottery they preferred. There was no constraint on choice time. The subjects
were told that at the end of the experiment, two of the chosen lotteries (one
from the motor lottery task, the other from the economic lottery task) would
be selected at random and executed. As described below, the economic lottery
was executed by a lottery machine, whereas the motor lottery was executed
by the subjects’ own movement in the rapid-pointing task.

In experiment 1, we modified the common consequence task in Wu and
Gonzalez (16, 17). As shown in Fig. 2, the common consequence task contained
3 rungs. The bottom rung consisted of 2 lotteries, R (0.27,$24;0.2,$20) and S
(0.52,$20). We adopted the terminology from Wu and Gonzalez and called the
first lottery the riskier lottery (R) and the second lottery the safer lottery in the
sense that R has a higher probability of winning the highest outcome ($24)
among the two lotteries but also has a higher probability of winning nothing
compared with the safer lottery (S). We note that this definition for the degree
of risk is not unique; there are other definitions of risk used in the literature.
For example, risk is sometimes defined as the variance of the probability
distribution over outcomes in a lottery [see Weber et al. (26) and Preuschoff
et al. (34)], We note that, in experiment 1, the riskier lottery in each rung
according to Wu and Gonzalez’ definition was also the lottery with greater
variance. Each upper rung was constructed by adding a common consequence

(0.2,$20) to the lower rung. For each rung, we slightly jittered the outcomes
and the probabilities to create 8 repetitions. The payoff of O1 ranged from $18
to $25 and (O1 	 O2) was fixed at $4. The amount of jittering in both outcome
and probability were always identical between the motor and the classical
lottery tasks. The 2 tasks (classical lottery task and motor lottery task) were run
in blocks, and the order in which subjects completed the economic and the
motor block was counterbalanced across subjects. The subjects were unaware
of the second block when performing in the first block.

In experiment 2, we modified the common ratio task in Kahneman and
Tversky (24). All of the lotteries we created had only 1 non-zero outcome. The
outcome ranged from gaining $30 to gaining $150 and was randomly chosen
from a uniform distribution within this interval. The probabilities ranged from
0.2 to 0.96. Each task modality had 120 trials, making a total of 240 trials, which
took �70 min to complete. There were 2 minor differences in design from
experiment 1. First, in every trial, the lotteries were presented for 4 s and were
followed by a short fixation period. After the fixation period, the lotteries
reappeared and the subject had 1 s to indicate his/her choice by pressing a
button. Second, in experiment 2, we did not run each task in separate blocks
of trials. In 8 blocks of trials (32 trials per block), each block contained the same
number of classical lottery tasks and motor lottery tasks presented at random
order. For more details on the lottery design, see SI Materials and Methods
and Fig. S1.
Lottery execution. After the subjects completed the decision-making session, 2
of their chosen lotteries (one from the classical lotteries, the other from the
motor lotteries) were selected at random. The 2 lotteries were then executed
to determine the subjects’ final payoffs of the experiment, which was the sum
of the participation fee and the amount she/he won for playing the 2 lotteries.
The classical lottery was executed by a computer-programmed lottery ma-
chine (experiment 1) or a lottery box that contained numbered ping-pong
balls from which subjects picked 1 ping-pong ball out of 100 to determine
whether she/he won or not (experiment 2). For the motor lottery, it was
executed by the subjects performing a 1-shot pointing task to the selected
motor lottery. We allowed the subjects to warm up as many trials as they
wanted (the mean warm-up trials was 30) before doing the 1-shot task. The
subjects were paid $12/h for participation in both experiment 1 and experi-
ment 2. The maximum payoff of a lottery in experiment 1 was $25. Hence, the
subjects could receive a bonus of up to $50 that depended on the outcome of
lottery executions. The maximum payoff of a lottery in experiment 2 was $150;
hence, the subjects could earn up to a $300 bonus. The subjects, on average,
earned $67 in experiment 1 and $75 in experiment 2.
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